±±¾©Êк£µíÇø2018-2019ѧÄêµÚ¶þѧÆÚÆÚÖÐÊýѧÊÔÌâ¼°´ð°¸ ÏÂÔØ±¾ÎÄ

º£µíÇø¸ß¶þÄê¼¶µÚ¶þѧÆÚÆÚÖÐÁ·Ï°²Î¿¼´ð°¸

2019.4

Êý ѧ

Ò»£®Ñ¡ÔñÌ⣺±¾´óÌâ¹²8СÌ⣬ÿСÌâ4·Ö£¬¹²32·Ö£®ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâĿҪÇóµÄ£®

1 D 2 A 3 D 4 B 5 C 6 C 7 A 8 D ÌâºÅ ´ð°¸

¶þ£®Ìî¿ÕÌ⣺±¾´óÌâ¹²6СÌ⣬ÿСÌâ4·Ö£¬¹²24·Ö£® 9.

?2i £¨´ð°¸²»Î¨Ò»£©

10. y??2x

11. x??1;5 13. ?

12.

3 4 14. ¢Ú¢Û£¨¶ÔÒ»¸öµÃ2·Ö£¬ÓдíÎ󲻸ø·Ö£©

Èý£®½â´ðÌ⣺±¾´óÌâ¹²4СÌ⣬¹²44·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷£¬Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮 15. ½â£º

£¨¢ñ£©ÒòΪµãA(1,2)ÔÚÔ²x?y?4x?a?0ÉÏ,

ËùÒÔ1?4?4?a?0.

½âµÃ a??1.

ËùÒÔÔ²µÄ·½³ÌΪx?y?4x?1?0£¬¼´(x?2)?y?5. ËùÒÔÔ²ÐÄ×ø±êΪ(2,0)£¬Ô²µÄ°ë¾¶rΪ5. £¨¢ò£©ÒòΪµãA£¬µãB¶¼ÔÚÔ²ÉÏ£¬ÇÒAB?25?2r,

ËùÒÔÖ±ÏßAB¾­¹ýÔ²CµÄÔ²ÐÄ.

222222ËùÒÔÖ±ÏßABµÄбÂÊk?0?2??2. 2?1ËùÒÔÖ±ÏßABµÄ·½³ÌΪy??2(x?2)£¬¼´y??2x?4. 16. ½â£º £¨¢ñ£© (11,1 )£¬

3311

Ò²¸ø·Ö£¬Ìî(,0)²»¸ø·Ö. 33

×¢£ºÃ¿¿Õ 2 ·Ö£¬µÚÒ»¸ö¿Õ¿ª±Õ¾ù¿É£¬µÚ¶þ¸ö¿ÕÌîx=(x)=3ax2+2bx+1£¬ £¨¢ò£©ÒòΪf¡é¨¬?ÓÉÌâÒâÖª£¬¨ª??1f¡é()=0;3 f¡é(1)=0.2¨¬æö11?2b?1=0;?3a?ç÷ç÷ ¼´¨ª33èø?2??3a?12b?11=0.¨¬?a=1, ½âµÃ¨ªb=-2.??£¨¢ó£©c=0»ò-17. ½â£º

£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬a?2,e?4. 27c6?£¬ a3ËùÒÔc?26. 384?£¬ 33ÒòΪb2?a2?c2?4?x2y2??1. ËùÒÔÍÖÔ²µÄ·½³ÌΪ

443£¨¢ò£©µãAÔÚÒÔCDΪֱ¾¶µÄÔ²ÉÏ. ÉèC×ø±êΪ(x1,y1)£¬D×ø±êΪ(x2,y2). ¢Ù µ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬ÔòlµÄ·½³ÌΪx?1.

ÓÉ??x?1,22?x?3y?4.µÃ ??x?1,

?y??1.²»·ÁÉèC(1,1)£¬D(1,?1). ËùÒÔAC?(?1,1),AD?(?1,?1). ËùÒÔAC?AD?0. ËùÒÔAC?AD.

ËùÒÔµãAÔÚÒÔCDΪֱ¾¶µÄÔ²ÉÏ.

¢Úµ±Ö±ÏßlбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy?k(x?1). ÓÉ??y?k(x?1),?x?3y?4.2222

µÃ(1?3k)x?6kx?3k?4?0

22?6k2x1?x2?,?2?1?3k ËùÒÔ?2?xx?3k?4.12?1?3k2?ËùÒÔAC?(x1?2,y1),AD?(x2?2,y2). ËùÒÔAC?AD?(x1?2)(x2?2)?y1y2.

?(x1?2)(x2?2)?k2(x1?1)(x2?1)

?x1x2?2(x1?x2)?4?k2[x1x2?(x1?x2)?1]

23k2?46k26k223k?4??2??4?k(??1) 22221?3k1?3k1?3k1?3k3k2?3k2???0. 1?3k21?3k2ËùÒÔAC?AD?0. ËùÒÔAC?AD.

ËùÒÔµãAÔÚÒÔCDΪֱ¾¶µÄÔ²ÉÏ.

×ÛÉÏ£¬µãAÔÚÒÔCDΪֱ¾¶µÄÔ²ÉÏ. 18. ½â£º

(x)=ax-ex£¬ £¨¢ñ£©f¡é(1)=0 ÓÉÌâÒâÖª£¬f¡é¼´a-e=0 £¬

ËùÒÔa=e. £¨¢ò£©µ±a=3ʱ£¬f(x)?32xx?e£¬ 2(x)=3x-ex. ËùÒÔf¡éÁîg(x)?f?(x)£¬ ËùÒÔg?(x)?3?e.

xÒòΪx?[0,1]£¬ËùÒÔe?[1,e]. Òò´Ëg?(x)?3?e?0ºã³ÉÁ¢.

xxËùÒÔµ±x?[0,1]ʱ£¬g(x)?f?(x)µ¥µ÷µÝÔö. ÓÖÒòΪf'(0)=-1<0£¬f'(1)=3-e>0£¬ ËùÒÔ´æÔÚΨһµÄx0?(0,1)£¬Ê¹µÃf'(x0)=0. ÁбíÈçÏ£º

x 0 (0,x0) x0 0 ¼«Ð¡Öµ (x0,1) 1 f¡é(x) -1 -1 - + 3-e 3-e 2f(x) µ±x?[0,1]ʱ£¬f(x)maxìüïï3=max{f(0),f(1)}=maxíý-1,-e=-1.

ïïîþ2ËùÒÔµ±a=3,x?[0,1]ʱ£¬f(x)?1. £¨¢ó£©a?(??,0)U(e,??).