£¨8£© £¨*£¬f£¬e£¬T6£© £¨9£© £¨-£¬T5£¬T6£¬T7£© £¨10£© £¨£º=£¬T7£¬ £¬b£© £¨11£© £¨BR£¬ £¬ £¬£¨1£©£© £¨12£© 8¡¢½«Óï¾ä
if A V B>0 then while C>0 do C:=C+D ·Òë³ÉËÄԪʽ¡£ ´ð£º
100 (jnz£¬ A£¬ -£¬ 104) 101 (j£¬ -£¬ -£¬ 102) 102 (j>£¬ B£¬ 0£¬ 104) 103 (j£¬ -£¬ -£¬ 109) 104 (j>£¬ C£¬ 0£¬ 106) 105 (j£¬ -£¬ -£¬ 109) 106 (+£¬ C£¬ D£¬ T1) 107 (:=£¬ T1£¬ -£¬ C) 108 (j£¬ -£¬ -£¬ 104)
109
9¡¢¶ÔÏÂÁÐÎÄ·¨G: S'->#S# S->D(R) R->R;P|P P->S|i D->i
£¨1£©¼ÆËãÎÄ·¨GÖÐÿ¸ö·ÇÖÕ½á·ûµÄFIRSTVT¼¯£» £¨2£©¼ÆËãÎÄ·¨GÖÐÿ¸ö·ÇÖÕ½á·ûµÄLASTVT¼¯£» ´ð£º£¨1£©¸÷·ÇÖÕ½á·ûµÄFIRSTVT¼¯ºÏΪ£º
FIRSTVT£¨S¡¯£©={ #} FIRSTVT£¨P£©={£¨£¬FIRSTVT£¨S£©={£¨£¬i£© FIRSTVT£¨D£©={i } FIRSTVT£¨R£©={£»£¬£¨£¬i £© £¨2£©¸÷·ÇÖÕ½á·ûµÄLASTVT¼¯ºÏΪ£º
LASTVT£¨S¡¯£©={#} LASTVT£¨P£©={ }£¬i} LASTVT£¨S£©={} } LASTVT£¨D£©={ i}
LASTVT£¨R£©={£»£¬£©£¬i} 10¡¢¶ÔÏÂÁÐÎÄ·¨G:
£©i S'->#S# S->fStS S->i=E E->E+T|T T->P¡üT|P P->(E)|i
£¨1£©¼ÆËãÎÄ·¨GÖÐÿ¸ö·ÇÖÕ½á·ûµÄFIRSTVT¼¯£» £¨2£©¼ÆËãÎÄ·¨GÖÐÿ¸ö·ÇÖÕ½á·ûµÄLASTVT¼¯£»
´ð£º£¨1£©¸÷·ÇÖÕ½á·ûµÄFIRSTVT¼¯ºÏΪ£º
FIRSTVT£¨S¡¯£©={ #} FIRSTVT£¨T£©={ ¡ü£¬£¨£¬i£© FIRSTVT£¨S£©={f£¬i} FIRSTVT£¨E£©={+£¬¡ü£¬£¨£¬i £© FIRSTVT£¨P£©={£¨£¬i £©
£¨2£©¸÷·ÇÖÕ½á·ûµÄLASTVT¼¯ºÏΪ£º
LASTVT£¨S¡¯£©={#} LASTVT£¨T£©={ ¡ü£¬}£¬i} LASTVT£¨S£©={ t£¬=£¬+£¬¡ü£¬)£¬i} LASTVT£¨E£©={ +£¬¡ü£¬}£¬i} LASTVT£¨P£©={ }£¬i}
11¡¢ÎÄ·¨G1£ºP->PaP|PbP|cP|Pe|f
Ö¤Ã÷ÎÄ·¨G1ÊǶþÒåÎÄ·¨¡£
´ð£ºÒòΪÎÄ·¨´æÔÚ¾äÐÍ£ºfbfbf £¬´Ë¾äÐÍÓÐÁ½¿Ã²»Í¬µÄÓï·¨Ê÷£¬ËùÒÔÎÄ·¨ÊǶþÒåµÄ¡£
»ò´æÔÚ2ÖÖ×îÓÒÍÆµ¼£º
A¡¢ P=>PbP=>PbPbP=>PbPbf=>Pbfbf=>fbfbf B¡¢ P=>PbP=>Pbf=>PbPbf=>Pbfbf=>fbfbf 12¡¢ÓÐÎÄ·¨G[N]£º
N->SE|E S->SD|D
E->0|2|4|6|8|10 D->0|1|2|3|4|5|6|7|8|9
Ö¤Ã÷¸ÃÎÄ·¨ÊǶþÒåµÄ£»´ËÎÄ·¨ÃèÊöµÄÓïÑÔÊÇʲô£¿²¢ÊÔд³öÁíÒ»ÎÄ·¨£¬Ê¹L£¨G¡®£©=L£¨G£©£¬ÇÒG¡®ÊÇÎÞ¶þÒåµÄ¡£
´ð£º¶ÔÓÚ¸ÃÎÄ·¨£¬´æÔÚ¾äÐÍ110£¬ÓÐÁ½¿Ã²»Í¬µÄÓï·¨Ê÷»òÁ½ÖÖ²»Í¬µÄ×îÓÒÍÆµ¼£¬Òò´ËÎÄ·¨¾ßÓжþÒåÐÔ¡£
A¡¢ N=>SE=>S10=>D10=>110
B¡¢ N=>SE=>S0=>SD0=>S10=>D10=>110
¸ÃÎÄ·¨ÃèÊöµÄÓïÑÔÊÇżÊý¼¯ºÏ¡£ µÈ¼ÛµÄÎÞ¶þÒåÎÄ·¨ÊÇ£º G¡®[N]£º N->SE|E S->SD|D E->0|2|4|6|8
D->0|1|2|3|4|5|6|7|8|9
13¡¢Ð´³ö²»Äܱ»5Õû³ýµÄżÕûÊýµÄÎÄ·¨¡£ ´ð£ºG[Z]:
Z->(+|-)AB
A->0|1|2|3|4|5|6|7|8|9|AA B->1|2|3|4|5|6|7|8|9 14¡¢¶ÔÓÚÎÄ·¨G=£¨VN£¬VT£¬S£¬P£©£º
VN={ S£¬A£¬B£¬}£»VT={a£¬b}£¬¿ªÊ¼·ûºÅΪS
P£º S->aB|bA A->aS|bAA|a B->bS|aBB|b ¸ø³ö´®aaabbabbbaµÄ
£¨1£© ×î×óÍÆµ¼£»£¨2£©×îÓÒÍÆµ¼£»£¨3£©ÍƵ¼Ê÷¡£ ´ð£º×î×óÍÆµ¼£º
S=>aB=>aaBB=>aaaBBB=>aaabSBB=>aaabbABB=>aaabbaBB=>aaabbabB=>aaabbabbS=>aaabbabbbA=>aaabbabbba ×îÓÒÍÆµ¼£º
S=>aB=>aaBB=>aaBbS=>aaBbbA=>aaBbba=>aaaBBbba=>aaaBbbba=>aaabSbbba=>aaabbAbbba=>aaabbabbba
15¡¢Ê²Ã´ÊǾä±ú£¿
´ð£ºÒ»¸ö¾äÐ͵Â×î×óÖ±½Ó¶ÌÓï³ÆÎª¾ä±ú¡£ 16¡¢Ê²Ã´ÊÇ×î×óËØ¶ÌÓ
17¡¢ ÉÏÏÂÎÄÎÞ¹ØÎÄ·¨
´ð£ºÈôÒ»¸öÐÎʽÎÄ·¨ G = (N, ¦², P, S) µÄ²úÉúʽ¹æÔò¶¼È¡ÈçϵÄÐÎʽ£ºV -> w£¬Ôò³ÆÖ®ÎªÉÏÏÂÎÄÎ޹ص쬯äÖÐ V¡ÊN £¬w¡Ê(N¡È¦²)* ¡£ÉÏÏÂÎÄÎÞ¹ØÎÄ·¨È¡ÃûΪ¡°ÉÏÏÂÎÄÎ޹ء±µÄÔÒò¾ÍÊÇÒòΪ×Ö·û V ×Ü¿ÉÒÔ±»×Ö´® w ×ÔÓÉÌæ»»£¬¶øÎÞÐ迼ÂÇ×Ö·û V ³öÏÖµÄÉÏÏÂÎÄ¡£ÉÏÏÂÎÄÎÞ¹ØÎÄ·¨ÖØÒªµÄÔÒòÔÚÓÚËüÃÇÓµÓÐ×㹻ǿµÄ±í´ïÁ¦À´±íʾ´ó¶àÊý³ÌÐòÉè¼ÆÓïÑÔµÄÓï·¨£»
ËÄ¡¢ÎÊ´ðÌ⣺
1¡¢¸ø³ö½«¸³ÖµÓï¾ä·Òë³ÉËÄԪʽµÄÓï·¨ÖÆµ¼¶¨Ò壬ÔÊÐíÓÒ²¿±í´ïʽº¬Óмӷ¨¡¢³Ë·¨¡¢È¡¸º¡¢À¨ºÅÔËËã¡£Éú³É¸³ÖµÓï¾äx:=b*(c+d)+aµÄËÄԪʽ¡£
2¡¢³öÌõ¼þ¸³ÖµÓï¾ä i:=if b then e1 else e2 µÄÓïÒå×Ó³ÌÐò¡£ÆäÖÐbÊDz¼¶û±í´ïʽ£¬e1ºÍe2 ÊÇËãÊõ±í´ïʽ£¬I´ú±íÓëe1ºÍe2ÀàÐÍÏàͬµÄ×󲿱äÁ¿¡£°´Ð´³öµÄÓïÒå×Ó³ÌÐòÉú³ÉÌõ¼þ¸³ÖµÓï¾ä z:=if a>c then x+y else x-y+0.5 µÄËÄԪʽÐòÁС£
3¡¢ÊÔд³öPASCALÑ»·Óï¾ä for I:=1 to n do sµÄÓïÒå×Ó³ÌÐò£¬¼Ù¶¨¸ÃÓï¾äµÄÎÄ·¨Îª£º
F1:=for i:=1 to n S:= F1 do S1
4¡¢¸ø³ö×öΪÌõ¼þ¿ØÖƵIJ¼¶û±í´ïʽ·ÒëΪËÄԪʽµÄÓï·¨ÖÆµ¼¶¨Ò壬ÔÊÐí²¼¶û±í´ïʽÖÐÓÐÓë¡¢»ò¡¢·Ç¼°À¨»¡ÔËËã¡££¨ÈçÔÚ·Òë¹ý³ÌÖÐʹÓÃÁË×Ô¶¨ÒåµÄº¯Êý£¬¿ÉÒÔ²»Ð´º¯Êý¹ý³Ì£¬µ«Çë×¢Ã÷º¯ÊýµÄ¹¦ÄܺͳöÈë¿ÚµÄ²ÎÊý£©¡£
5¡¢°´Óï·¨ÖÆµ¼µÄ¶¨Ò彫ÏÂÃæµÄºó׺±í´ïʽ·Òë³ÉÖÐ׺±í´ïʽ¡£×¢Ò⣺²»ÔÊÐí³öÏÖÈßÓàÀ¨ºÅ¡£
E->E1E2+ E->E1E2* E->id
6¡¢Ä³³ÌÐòÉè¼ÆÓïÑÔ˵Ã÷²¿·ÖµÄÓï·¨ÖÆµ¼¶¨ÒåÈçÏÂËùʾ£º
D->TL T->int|real L->L1,id|id
¸ø³öÆäÓï·¨ÖÆµ¼¶¨Òå¼°×Ôµ×ÏòÉϵķÒë·½°¸£¬²¢±È½ÏÁ½ÕߵIJ»Í¬¡£ 7¡¢ÉèÓÐÎÄ·¨G[S]£º
S->E
(1)