k k 1
g u
max ( )£»
s.t.
¦²
=
= ¡Ý
n k k k 1
u a u
, 0 .
ÆäÖÐ( ) k k g u ΪÈÎÒâµÄÒÑÖªº¯Êý¡£
½â°´±äÁ¿k u µÄÐòºÅ»®·Ö½×¶Î£¬¿´×÷n¶Î¾ö²ß¹ý³Ì¡£Éè״̬Ϊ1 2 1 , , , n+ x x L x £¬È¡ ÎÊÌâÖеıäÁ¿n u ,u , ,u 1 2 L Ϊ¾ö²ß¡£×´Ì¬×ªÒÆ·½³ÌΪ
, , 1,2, , . 1 1 x a x x u k n = k = k ?k = L +
È¡( ) k k g u Ϊ½×¶ÎÖ¸±ê£¬×îÓÅÖµº¯ÊýµÄ»ù±¾·½³ÌΪ£¨×¢Òâµ½0 1 = n+ x £©
( ) max [ ( ) ( )] 0 1 1 ¡Ü¡Ü + + = + k k u x k k k k f x g x f x
k k
£»
0 ¡Üx ¡Üa, k = n,n ?1,L,2,1 k £» (0) 0 1 = n+ f .
°´ÕÕÄæÐò½â·¨Çó³ö¶ÔÓ¦ÓÚk x ÿ¸öȡֵµÄ×îÓžö²ß* ( )
k k
u x £¬¼ÆËãÖÁ( ) 1 f a ºó¼´¿ÉÀû
ÓÃ×´Ì¬×ªÒÆ·½³ÌµÃµ½×îÓÅ״̬ÐòÁÐ{ *} k x ºÍ×îÓžö²ßÐòÁÐ{ * ( * )}
k k
u x ¡£
Ó뾲̬¹æ»®Ïà±È£¬¶¯Ì¬¹æ»®µÄÓÅÔ½ÐÔÔÚÓÚ£º
£¨i£©Äܹ»µÃµ½È«¾Ö×îÓŽ⡣ÓÉÓÚÔ¼ÊøÌõ¼þÈ·¶¨µÄÔ¼Êø¼¯ºÏÍùÍùºÜ¸´ÔÓ£¬¼´Ê¹Ö¸±ê
º¯Êý½Ï¼òµ¥£¬Ó÷ÇÏßÐԹ滮·½·¨Ò²ºÜÄÑÇó³öÈ«¾Ö×îÓŽ⡣¶ø¶¯Ì¬¹æ»®·½·¨°ÑÈ«¹ý³Ì»¯Îª
-62-
һϵÁнṹÏàËÆµÄ×ÓÎÊÌ⣬ÿ¸ö×ÓÎÊÌâµÄ±äÁ¿¸öÊý´ó´ó¼õÉÙ£¬Ô¼Êø¼¯ºÏÒ²¼òµ¥µÃ¶à£¬Ò× Óڵõ½È«¾Ö×îÓÅ½â¡£ÌØ±ðÊǶÔÓÚÔ¼Êø¼¯ºÏ¡¢×´Ì¬×ªÒƺÍÖ¸±êº¯Êý²»ÄÜÓ÷ÖÎöÐÎʽ¸ø³öµÄ ÓÅ»¯ÎÊÌ⣬¿ÉÒÔ¶Ôÿ¸ö×Ó¹ý³ÌÓÃö¾Ù·¨Çó½â£¬¶øÔ¼ÊøÌõ¼þÔ½¶à£¬¾ö²ßµÄËÑË÷·¶Î§Ô½Ð¡£¬ Çó½âÒ²Ô½ÈÝÒס£¶ÔÓÚÕâÀàÎÊÌ⣬¶¯Ì¬¹æ»®Í¨³£ÊÇÇóÈ«¾Ö×îÓŽâµÄΨһ·½·¨¡£
£¨ii£©¿ÉÒԵõ½Ò»×å×îÓŽ⡣Óë·ÇÏßÐԹ滮ֻÄܵõ½È«¹ý³ÌµÄÒ»¸ö×îÓŽⲻͬ£¬¶¯
̬¹æ»®µÃµ½µÄÊÇÈ«¹ý³Ì¼°ËùÓкó²¿×Ó¹ý³ÌµÄ¸÷¸ö״̬µÄÒ»×å×îÓŽ⡣ÓÐЩʵ¼ÊÎÊÌâÐèÒª ÕâÑùµÄ½â×壬¼´Ê¹²»ÐèÒª£¬ËüÃÇÔÚ·ÖÎö×îÓŲßÂÔºÍ×îÓÅÖµ¶ÔÓÚ״̬µÄÎȶ¨ÐÔʱҲÊǺÜÓÐ Óõġ£µ±×îÓŲßÂÔÓÉÓÚijЩÔÒò²»ÄÜʵÏÖʱ£¬ÕâÑùµÄ½â×å¿ÉÒÔÓÃÀ´Ñ°ÕÒ´ÎÓŲßÂÔ¡£ £¨iii£©Äܹ»ÀûÓþÑéÌá¸ßÇó½âЧÂÊ¡£Èç¹ûʵ¼ÊÎÊÌâ±¾Éí¾ÍÊǶ¯Ì¬µÄ£¬ÓÉÓÚ¶¯Ì¬¹æ»®
·½·¨·´Ó³Á˹ý³ÌÖð¶ÎÑݱäµÄǰºóÁªÏµºÍ¶¯Ì¬ÌØÕ÷£¬ÔÚ¼ÆËãÖпÉÒÔÀûÓÃʵ¼Ê֪ʶºÍ¾ÑéÌá ¸ßÇó½âЧÂÊ¡£ÈçÔÚ²ßÂÔµü´ú·¨ÖУ¬Êµ¼Ê¾ÑéÄܹ»°ïÖúÑ¡Ôñ½ÏºÃµÄ³õʼ²ßÂÔ£¬Ìá¸ßÊÕÁ²ËÙ ¶È¡£
¶¯Ì¬¹æ»®µÄÖ÷ҪȱµãÊÇ£º
£¨i£©Ã»ÓÐͳһµÄ±ê׼ģÐÍ£¬Ò²Ã»Óй¹ÔìÄ£Ð͵ÄͨÓ÷½·¨£¬ÉõÖÁ»¹Ã»ÓÐÅжÏÒ»¸öÎÊ ÌâÄÜ·ñ¹¹Ô춯̬¹æ»®Ä£Ð͵Ä×¼Ôò¡£ÕâÑù¾ÍÖ»ÄܶÔÿÀàÎÊÌâ½øÐоßÌå·ÖÎö£¬¹¹Ôì¾ßÌåµÄÄ£ ÐÍ¡£¶ÔÓڽϸ´ÔÓµÄÎÊÌâÔÚÑ¡Ôñ״̬¡¢¾ö²ß¡¢È·¶¨×´Ì¬×ªÒƹæÂɵȷ½ÃæÐèÒª·á¸»µÄÏëÏóÁ¦ ºÍÁé»îµÄ¼¼ÇÉÐÔ£¬Õâ¾Í´øÀ´ÁËÓ¦ÓÃÉϵľÖÏÞÐÔ¡£
£¨ii£©ÓÃÊýÖµ·½·¨Çó½âʱ´æÔÚάÊýÔÖ£¨curse of dimensionality£©¡£Èôһά״̬±äÁ¿ÓÐm ¸öȡֵ£¬ÄÇô¶ÔÓÚnάÎÊÌ⣬״̬xk ¾ÍÓÐmn¸öÖµ£¬¶ÔÓÚÿ¸ö״ֵ̬¶¼Òª¼ÆËã¡¢´æ´¢º¯ Êý( ) k k f x £¬¶ÔÓÚnÉÔ´óµÄʵ¼ÊÎÊÌâµÄ¼ÆËãÍùÍùÊDz»ÏÖʵµÄ¡£Ä¿Ç°»¹Ã»Óп˷þάÊýÔÖµÄ ÓÐЧµÄÒ»°ã·½·¨¡£
¡ì5 Èô¸ÉµäÐÍÎÊÌâµÄ¶¯Ì¬¹æ»®Ä£ÐÍ 5.1 ×î¶Ì·ÏßÎÊÌâ
¶ÔÓÚÀý1 Ò»Àà×î¶Ì·ÏßÎÊÌ⣨shortest Path Problem£©£¬½×¶Î°´¹ý³ÌµÄÑݱ仮·Ö£¬×´ ̬Óɸ÷¶ÎµÄ³õʼλÖÃÈ·¶¨£¬¾ö²ßΪ´Ó¸÷¸ö״̬³ö·¢µÄ×ßÏò£¬¼´ÓÐ( ) k 1 k k x = u x + £¬½×¶Î Ö¸±êΪÏàÁÚÁ½¶Î״̬¼äµÄ¾àÀë( , ( )) k k k k d x u x £¬Ö¸±êº¯ÊýΪ½×¶ÎÖ¸±êÖ®ºÍ£¬×îÓÅÖµº¯Êý ( ) k k f x ÊÇÓÉk x ³ö·¢µ½ÖÕµãµÄ×î¶Ì¾àÀ루»ò×îС·ÑÓã©£¬»ù±¾·½³ÌΪ
( ) min[ ( , ( )) ( )], , ,1; ( ) 1 1 f x d x u x f x k n L k k u x k k k k k k
k k
= + = + +
( ) 0. 1 1 = n+ n+ f x
ÀûÓÃÕâ¸öÄ£ÐÍ¿ÉÒÔËã³öÀýlµÄ×î¶Ì·ÏßΪAB C D E F G 1 2 1 2 2 £¬ÏàÓ¦µÄ×î¶Ì¾àÀëΪ18¡£ 5.2 Éú²ú¼Æ»®ÎÊÌâ
¶ÔÓÚÀý2 Ò»ÀàÉú²ú¼Æ»®ÎÊÌ⣨Production planning problem£©£¬½×¶Î°´¼Æ»®Ê±¼ä×ÔÈ» »®·Ö£¬×´Ì¬¶¨ÒåΪÿ½×¶Î¿ªÊ¼Ê±µÄ´¢´æÁ¿k x £¬¾ö²ßΪÿ¸ö½×¶ÎµÄ²úÁ¿k u £¬¼Çÿ¸ö½×¶Î µÄÐèÇóÁ¿£¨ÒÑÖªÁ¿£©Îªk d £¬Ôò×´Ì¬×ªÒÆ·½³ÌΪ
, 0, 1,2, , . 1 x x u d x k n k = k + k ?k k ¡Ý = L + (5)
Éèÿ½×¶Î¿ª¹¤µÄ¹Ì¶¨³É±¾·ÑΪa £¬Éú²úµ¥Î»ÊýÁ¿²úÆ·µÄ³É±¾·ÑΪb £¬Ã¿½×¶Îµ¥Î»ÊýÁ¿²ú Æ·µÄ´¢´æ·ÑΪc £¬½×¶ÎÖ¸±êΪ½×¶ÎµÄÉú²ú³É±¾ºÍ´¢´æ·ÑÖ®ºÍ£¬¼´
??? + > = + 0 , 0 ( , ) k k
k k k k
a bu u v x u cx (6)
-63-
Ö¸±êº¯ÊýVkn Ϊvk Ö®ºÍ¡£×îÓÅÖµº¯Êý( ) k k f x Ϊ´ÓµÚk ¶ÎµÄ״̬k x ³ö·¢µ½¹ý³ÌÖÕ½áµÄ×î
С·ÑÓã¬Âú×ã
( ) min[ ( , ) ( )], , ,1. f x v x u f 1 x 1 k n L k k u U k k k k k
k k
= + = ¡Ê + +
ÆäÖÐÔÊÐí¾ö²ß¼¯ºÏk U ÓÉÿ½×¶ÎµÄ×î´óÉú²úÄÜÁ¦¾ö¶¨¡£ÈôÉè¹ý³ÌÖÕ½áʱÔÊÐí´æ´¢Á¿Îª
0
x £¬ÔòÖÕ¶ËÌõ¼þÊÇ ( 0 ) 0.
1 1 = n+ n+ f x £¨7£©
n+1
£¨5£©~£¨7£©¹¹³É¸ÃÎÊÌâµÄ¶¯Ì¬¹æ»®Ä£ÐÍ¡£ 5.3 ×ÊÔ´·ÖÅäÎÊÌâ
Ò»ÖÖ»ò¼¸ÖÖ×ÊÔ´£¨°üÀ¨×ʽ𣩷ÖÅ䏸Èô¸ÉÓû§£¬»òͶ×ÊÓÚ¼¸¼ÒÆóÒµ£¬ÒÔ»ñµÃ×î´óµÄ Ð§Òæ¡£×ÊÔ´·ÖÅäÎÊÌ⣨resource allocating Problem£©¿ÉÒÔÊǶà½×¶Î¾ö²ß¹ý³Ì£¬Ò²¿ÉÒÔÊÇ ¾²Ì¬¹æ»®ÎÊÌ⣬¶¼Äܹ¹Ô춯̬¹æ»®Ä£ÐÍÇó½â¡£ÏÂÃæ¾ÙÀý˵Ã÷¡£
Àý5 »úÆ÷¿ÉÒÔÔڸߡ¢µÍÁ½ÖÖ¸ººÉÏÂÉú²ú¡£ų»úÆ÷Ôڸ߸ººÉϵÄÄê²úÁ¿ÊÇg(u)£¬ Ôڵ͸ººÉϵÄÄê²úÁ¿ÊÇh(u) £¬¸ß¡¢µÍ¸ººÉÏ»úÆ÷µÄÄêËðºÄÂÊ·Ö±ðÊÇ1 a ºÍ1 b
£¨0 1 1 1
h(u) = ¦Âu£¨¦Á>¦Â>0£©£¬¼´¸ß¡¢µÍ¸ººÉÏÂÿ̨»úÆ÷µÄÄê²úÁ¿·Ö±ðΪ¦ÁºÍ¦Â£¬½á¹û½«
ÓÐÊ²Ã´ÌØµã¡£
½âÄê¶ÈΪ½×¶Î±äÁ¿k = 1,2,L, n¡£×´Ì¬k x ΪµÚk Äê³õÍêºÃµÄ»úÆ÷Êý£¬¾ö²ßk u Ϊ µÚk ÄêͶÈë¸ß¸ººÉÔËÐеĄ̈Êý¡£µ±k x »òk u ²»ÊÇÕûÊýʱ£¬½«Ð¡Êý²¿·ÖÀí½âΪһÄêÖÐÕý³£ ¹¤×÷ʱ¼ä»òͶÈë¸ß¸ººÉÔËÐÐʱ¼äµÄ±ÈÀý¡£
»úÆ÷Ôڸߡ¢µÍ¸ººÉϵÄÄêÍêºÃÂÊ·Ö±ð¼ÇΪa ºÍb £¬Ôò1 a = 1?a £¬1 b = 1?b £¬ÓÐ a
( , ) ( ) ( ) k k k k k k v x u = g u + h x ?u £¨9£©
Ö¸±êº¯ÊýÊǽ׶ÎÖ¸±êÖ®ºÍ£¬×îÓÅÖµº¯Êý( ) k k f x Âú×ã 0 , , ,2,1.
( ) max [ ( , ) ( )], 0 1 1 x m k n L f x v x u f x
k
k k u x k k k k k
k k
¡Ü¡Ü =
= + ¡Ü¡Ü + + (10)
¼°×ÔÓÉÖÕ¶ËÌõ¼þ
( ) 0, 0 . 1 1 1 f x x m n n n = ¡Ü¡Ü+ + + £¨11£©
µ±k v ÖеÄg, hÓýϼòµ¥µÄº¯Êý±í´ïʽ¸ø³öʱ£¬¶ÔÓÚÿ¸ök ¿ÉÒÔÓýâÎö·½·¨Çó½â¼«
ÖµÎÊÌâ¡£ÌØ±ð£¬Èôg(u) =¦Áu £¬h(u) = ¦Âu£¬£¨10£©ÖеÄ[ ( , ) ( )] k k k k 1 k v x u f x + + ½«ÊÇ
k
u
µÄÏßÐÔº¯Êý£¬×î´óÖµµã±ØÔÚÇø¼äk k 0 ¡Üu ¡Üx µÄ×ó¶Ëµã= 0 k u »òÓҶ˵ãk k u = x È¡µÃ£¬ ¼´Ã¿Äê³õ½«ÍêºÃµÄ»úÆ÷È«²¿Í¶ÈëµÍ¸ººÉ»ò¸ß¸ººÉÔËÐС£
¡ì6 ¾ßÌåµÄÓ¦ÓÃʵÀý
Àý6 Éèij¹¤³§ÓÐ1000 ̨»úÆ÷£¬Éú²úÁ½ÖÖ²úÆ·A¡¢B£¬ÈôͶÈëx̨»úÆ÷Éú²úA²ú
-64-
Æ·£¬Ôò´¿ÊÕÈëΪ5x £¬ÈôͶÈëy ̨»úÆ÷Éú²úBÖÖ²úÆ·£¬Ôò´¿ÊÕÈëΪ4y£¬ÓÖÖª£ºÉú²úAÖÖ ²úÆ·»úÆ÷µÄÄêÕÛËðÂÊΪ20%£¬Éú²úB ²úÆ·»úÆ÷µÄÄêÕÛËðÂÊΪ10%£¬ÎÊÔÚ5 ÄêÄÚÈçºÎ°² ÅŸ÷Äê¶ÈµÄÉú²ú¼Æ»®£¬²ÅÄÜʹ×ÜÊÕÈë×î¸ß£¿ ½âÄê¶ÈΪ½×¶Î±äÁ¿k = 1,2,3,4,5¡£
Áîk x ±íʾµÚk Äê³õÍêºÃ»úÆ÷Êý£¬k u ±íʾµÚk Äê°²ÅÅÉú²úA ÖÖ²úÆ·µÄ»úÆ÷Êý£¬Ôò k k x ?u ΪµÚk Äê°²ÅÅÉú²úBÖÖ²úÆ·µÄ»úÆ÷Êý£¬ÇÒk k 0 ¡Üu ¡Üx ¡£ ÔòµÚk +1Äê³õÍêºÃµÄ»úÆ÷Êý
x (1 0.2)u (1 0.1)(x u ) 0.9x 0.1u 1 = ? + ?? = ?+ £¨12£©
Áî( , ) k k k v x u ±íʾµÚk ÄêµÄ´¿ÊÕÈ룬( ) k k f x ±íʾµÚk Äê³õÍùºó¸÷ÄêµÄ×î´óÀûÈóÖ®
k k k k k k
ºÍ¡£ ÏÔÈ»
( ) 0 6 6 f x = £¨13£©
Ôò
( ) max { ( , ) ( )} 0 1 1 ¡Ü¡Ü + + = + k k u x k k k k k f x v x u f x
k k
max {5 4( ) ( )} max { 4 ( )} 0 1 1 0 1 1 ¡Ü¡Ü + + ¡Ü¡Ü + + = + ? + = + + u x k k k k k u x k k k k u x u f x u x f x
k k k k
£¨14£©
£¨1£©k = 5ʱ£¬ÓÉ£¨13£©¡¢£¨14£©Ê½µÃ
( ) max { 4 } 5 5 0 5 5
5 5
f x u x
u x
= +
¡Ü¡Ü
u + 4x ¹ØÓÚ5 u Çóµ¼£¬ÖªÆäµ¼Êý´óÓÚÁ㣬ËùÒÔ5 5 u + 4x ÔÚ5 u µÈÓÚ5 x ´¦È¡µÃ×î´óÖµ£¬ ¼´5 5 u = x ʱ£¬5 5 5 f (x ) = 5x ¡£
£¨2£©k = 4ʱ£¬ÓÉ£¨12£©¡¢£¨14£©Ê½µÃ ( ) max { 4 5 } 4 4 0 4 4 5
5 5
4 4
f x u x x