CR??CI(j)a?RI(j)aj?1j?1mmj
jµ±CR?0.10ʱ£¬ÈÏΪ²ã´Î×ÜÅÅÐò½á¹û¾ßÓнÏÂúÒâµÄÒ»ÖÂÐÔ²¢½ÓÊܸ÷ÖÎö½á¹û¡£ ¡ì2 ²ã´Î·ÖÎö·¨µÄÓ¦ÓÃ
ÔÚÓ¦Óòã´Î·ÖÎö·¨Ñо¿ÎÊÌâʱ£¬Óöµ½µÄÖ÷ÒªÀ§ÄÑÓÐÁ½¸ö£º£¨i£©ÈçºÎ¸ù¾Ýʵ¼ÊÇé¿ö³éÏó³ö½ÏΪÌùÇеIJã´Î½á¹¹£»£¨ii£©ÈçºÎ½«Ä³Ð©¶¨ÐÔµÄÁ¿×÷±È½Ï½Ó½üʵ¼Ê¶¨Á¿»¯´¦Àí¡£²ã´Î·ÖÎö·¨¶ÔÈËÃǵÄ˼ά¹ý³Ì½øÐÐÁ˼ӹ¤ÕûÀí£¬Ìá³öÁËÒ»Ì×ϵͳ·ÖÎöÎÊÌâµÄ·½·¨£¬Îª¿ÆÑ§¹ÜÀíºÍ¾ö²ßÌṩÁ˽ÏÓÐ˵·þÁ¦µÄÒÀ¾Ý¡£µ«²ã´Î·ÖÎö·¨Ò²ÓÐÆä¾ÖÏÞÐÔ£¬Ö÷Òª±íÏÖÔÚ£º£¨i£©ËüÔںܴó³Ì¶ÈÉÏÒÀÀµÓÚÈËÃǵľÑ飬Ö÷¹ÛÒòËØµÄÓ°ÏìºÜ´ó£¬ËüÖÁ¶àÖ»ÄÜÅųý˼ά¹ý³ÌÖеÄÑÏÖØ·ÇÒ»ÖÂÐÔ£¬È´ÎÞ·¨Åųý¾ö²ßÕ߸öÈË¿ÉÄÜ´æÔÚµÄÑÏÖØÆ¬ÃæÐÔ¡££¨ii£©±È½Ï¡¢ÅжϹý³Ì½ÏΪ´Ö²Ú£¬²»ÄÜÓÃÓÚ¾«¶ÈÒªÇó½Ï¸ßµÄ¾ö²ßÎÊÌâ¡£AHPÖÁ¶àÖ»ÄÜËãÊÇÒ»Öְ붨Á¿£¨»ò¶¨ÐÔÓ붨Á¿½áºÏ£©µÄ·½·¨¡£
ÔÚÓ¦Óòã´Î·ÖÎö·¨Ê±£¬½¨Á¢²ã´Î½á¹¹Ä£ÐÍÊÇÊ®·Ö¹Ø¼üµÄÒ»²½¡£ÏÖÔÙ·ÖÎöÒ»¸öʵÀý£¬ÒÔ±ã˵Ã÷ÈçºÎ´Óʵ¼ÊÎÊÌâÖгéÏó³öÏàÓ¦µÄ²ã´Î½á¹¹¡£
Àý2 ÌôÑ¡ºÏÊʵŤ×÷¡£¾Ë«·½¿Ò̸£¬ÒÑÓÐÈý¸öµ¥Î»±íʾԸÒâ¼ÓÃij±ÏÒµÉú¡£¸ÃÉú¸ù¾ÝÒÑÓÐÐÅÏ¢½¨Á¢ÁËÒ»¸ö²ã´Î½á¹¹Ä£ÐÍ£¬ÈçÏÂͼËùʾ¡£
AB1B2B3B4B5B6
B1 1 1 1 4 1 1/2 B2 1 1 2 4 1 1/2 B3 1 1/2 1 5 3 1/2 B4 1/4 1/4 1/5 1 1/3 1/3 B5 1 1 1/3 3 1 1 B6 2 2 2 3 3 1
£¨·½°¸²ã£©
B1C1C2C3B2C1C2C3
C1 1 1/4 1/2 C1 1 1/4 1/5 C2 4 1 3 C2 4 1 1/2 C3 2 1/3 1 C3 5 2 1
B3C1C2C3B4C1C2C3
C1 1 3 1/3 C1 1 1/3 5 C2 1/3 1 7 C2 3 1 7 C3 3 1/7 1 C3 1/5 1/7 1 B5C1C2C3B6C1C2C3
C1 1 1 7 C1 1 7 9 C2 1 1 7 C2 1/7 1 1 C3 1/7 1/7 1 C3 1/9 1 1
£¨²ã´Î×ÜÅÅÐò£©ÈçϱíËùʾ¡£ Ñо¿ ·¢Õ¹ ´ýÓö ͬÊ µØÀí µ¥Î» ×¼Ôò ¿ÎÌâ ǰ; Çé¿ö λÖà ÃûÆø 0.1507 0.1792 0.1886 0.0472 0.1464 0.2879 ×¼Ôò²ãȨֵ ·½°¸²ã ¹¤×÷1 0.13650.09740.24260.27900.46670.7986 µ¥ÅÅÐò ¹¤×÷2 0.62500.33310.08790.64910.46670.1049 Ȩֵ ¹¤×÷3 0.23850.56950.66940.07190.06670.0965 ¸ù¾Ý²ã´Î×ÜÅÅÐòȨֵ£¬¸ÃÉú×îÂúÒâµÄ¹¤×÷Ϊ¹¤×÷1¡£ ¼ÆËã³ÌÐòÈçÏ£º clc
a=[1,1,1,4,1,1/2 1,1,2,4,1,1/2 1,1/2,1,5,3,1/2
1/4,1/4,1/5,1,1/3,1/3 1,1,1/3,3,1,1 2,2,2,3,3,1];
[x,y]=eig(a);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci1=(lamda-6)/5;cr1=ci1/1.24 w1=x(:,j)/sum(x(:,j))
b1=[1,1/4,1/2;4,1,3;2,1/3,1];
[x,y]=eig(b1);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci21=(lamda-3)/2;cr21=ci21/0.58 w21=x(:,j)/sum(x(:,j))
b2=[1 1/4 1/5;4 1 1/2;5 2 1]; [x,y]=eig(b2);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci22=(lamda-3)/2;cr22=ci22/0.58 w22=x(:,j)/sum(x(:,j))
b3=[1 3 1/3;1/3 1 1/7;3 7 1]; [x,y]=eig(b3);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci23=(lamda-3)/2;cr23=ci23/0.58 w23=x(:,j)/sum(x(:,j))
b4=[1 1/3 5;3 1 7;1/5 1/7 1]; [x,y]=eig(b4);lamda=max(diag(y)); [i,j]=find(y==lamda);
×ÜÅÅÐòȨֵ 0.3952 0.2996 0.3052 ci24=(lamda-3)/2;cr24=ci24/0.58 w24=x(:,j)/sum(x(:,j))
b5=[1 1 7;1 1 7;1/7 1/7 1]; [x,y]=eig(b5);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci25=(lamda-3)/2;cr25=ci25/0.58 w25=x(:,j)/sum(x(:,j))
b6=[1 7 9;1/7 1 1 ;1/9 1 1]; [x,y]=eig(b6);lamda=max(diag(y)); [i,j]=find(y==lamda);
ci26=(lamda-3)/2;cr26=ci26/0.58 w26=x(:,j)/sum(x(:,j))
w_sum=[w21,w22,w23,w24,w25,w26]*w1 ci=[ci21,ci22,ci23,ci24,ci25,ci26]; cr=ci*w1/sum(0.58*w1)
ϰ Ìâ °Ë
1. Èô·¢ÏÖÒ»³É¶Ô±È½Ï¾ØÕóAµÄ·ÇÒ»ÖÂÐÔ½ÏΪÑÏÖØ£¬Ó¦ÈçºÎѰÕÒÒýÆð·ÇÒ»ÖÂÐÔµÄÔªËØ£¿ÀýÈ磬ÉèÒѹ¹ÔìÁ˳ɶԱȽϾØÕó
??1A??5?1??31?3?516?
?11?6?£¨i£©¶ÔA×÷Ò»ÖÂÐÔ¼ìÑé¡£
£¨ii£©ÈçAµÄ·ÇÒ»ÖÂÐÔ½ÏÑÏÖØ£¬Ó¦ÈçºÎ×÷ÐÞÕý¡£
µÚ¾ÅÕ ²åÖµÓëÄâºÏ
²åÖµ£ºÇó¹ýÒÑÖªÓÐÏÞ¸öÊý¾ÝµãµÄ½üËÆº¯Êý¡£
ÄâºÏ£ºÒÑÖªÓÐÏÞ¸öÊý¾Ýµã£¬Çó½üËÆº¯Êý£¬²»ÒªÇó¹ýÒÑÖªÊý¾Ýµã£¬Ö»ÒªÇóÔÚijÖÖÒâÒåÏÂËüÔÚÕâЩµãÉϵÄ×ÜÆ«²î×îС¡£
²åÖµºÍÄâºÏ¶¼ÊÇÒª¸ù¾ÝÒ»×éÊý¾Ý¹¹ÔìÒ»¸öº¯Êý×÷Ϊ½üËÆ£¬ÓÉÓÚ½üËÆµÄÒªÇó²»Í¬£¬¶þÕßµÄÊýѧ·½·¨ÉÏÊÇÍêÈ«²»Í¬µÄ¡£¶øÃæ¶ÔÒ»¸öʵ¼ÊÎÊÌ⣬¾¿¾¹Ó¦¸ÃÓòåÖµ»¹ÊÇÄâºÏ£¬ÓÐʱÈÝÒ×È·¶¨£¬ÓÐʱÔò²¢²»Ã÷ÏÔ¡£ ¡ì1 ²åÖµ·½·¨
ÏÂÃæ½éÉܼ¸ÖÖ»ù±¾µÄ¡¢³£ÓõIJåÖµ£ºÀ¸ñÀÊÈÕ¶àÏîʽ²åÖµ¡¢Å£¶Ù²åÖµ¡¢·Ö¶ÎÏßÐÔ²åÖµ¡¢Hermite²åÖµºÍÈý´ÎÑùÌõ²åÖµ¡£
1.1 À¸ñÀÊÈÕ¶àÏîʽ²åÖµ 1.1.1 ²åÖµ¶àÏîʽ
ÓöàÏîʽ×÷ΪÑо¿²åÖµµÄ¹¤¾ß£¬³ÆÎª´úÊý²åÖµ¡£Æä»ù±¾ÎÊÌâÊÇ£ºÒÑÖªº¯Êýf(x)ÔÚÇø¼ä[a,b]ÉÏn?1¸ö²»Í¬µãx0,x1,?,xn´¦µÄº¯ÊýÖµyi?f(xi)(i?0,1,?,n)£¬ÇóÒ»¸öÖÁ¶àn´Î¶àÏîʽ
?n(x)?a0?a1x???anxn £¨1£© ʹÆäÔÚ¸ø¶¨µã´¦Óëf(x)ֵͬ£¬¼´Âú×ã²åÖµÌõ¼þ
?n(xi)?f(xi)?yi(i?0,1,?,n) £¨2£©
?n(x)³ÆÎª²åÖµ¶àÏîʽ£¬xi(i?0,1,?,n)³ÆÎª²åÖµ½Úµã£¬¼ò³Æ½Úµã£¬[a,b]³ÆÎª²åÖµ
Çø¼ä¡£´Ó¼¸ºÎÉÏ¿´£¬n´Î¶àÏîʽ²åÖµ¾ÍÊǹýn?1¸öµã(xi,f(xi))(i?0,1,?,n)£¬×÷Ò»Ìõ¶àÏîʽÇúÏßy??n(x)½üËÆÇúÏßy?f(x)¡£
n´Î¶àÏîʽ£¨1£©ÓÐn?1¸ö´ý¶¨ÏµÊý£¬ÓɲåÖµÌõ¼þ£¨2£©Ç¡ºÃ¸ø³ön?1¸ö·½³Ì
2n?a0?a1x0?a2x0???anx0?y0?2n?a0?a1x1?a2x1???anx1?y1 £¨3£© ?? ? ? ?a?ax?ax2???axn?y1n2nnnn?0¼Ç´Ë·½³Ì×éµÄϵÊý¾ØÕóΪA£¬Ôò
1x0det(A)?1x12x0?nx0x12?x1n???????2n1xnxn?xn
ÊÇ·¶µÂÃÉÌØ(Vandermonde)ÐÐÁÐʽ¡£µ±x0,x1,?,xn»¥²»Ïàͬʱ£¬´ËÐÐÁÐʽֵ²»ÎªÁã¡£Òò´Ë·½³Ì×飨3£©ÓÐΨһ½â¡£Õâ±íÃ÷£¬Ö»Òªn?1¸ö½Úµã»¥²»Ïàͬ£¬Âú×ã²åÖµÒªÇó£¨2£©
µÄ²åÖµ¶àÏîʽ£¨1£©ÊÇΨһµÄ¡£
²åÖµ¶àÏîʽÓë±»²åº¯ÊýÖ®¼äµÄ²î
Rn(x)?f(x)??n(x) ³ÆÎª½Ø¶ÏÎó²î£¬ÓÖ³ÆÎª²åÖµÓàÏî¡£µ±f(x)³ä·Ö¹â»¬Ê±£¬
f(n?1)(?)Rn(x)?f(x)?Ln(x)??n?1(x),??(a,b)
(n?1)!ÆäÖÐ?n?1(x)??(x?xj?0nj)¡£
1.1.2À¸ñÀÊÈÕ²åÖµ¶àÏîʽ
ʵ¼ÊÉϱȽϷ½±ãµÄ×÷·¨²»Êǽⷽ³Ì£¨3£©Çó´ý¶¨ÏµÊý£¬¶øÊÇÏȹ¹ÔìÒ»×é»ùº¯Êý
li(x)?(x?x0)?(x?xi?1)(x?xi?1)?(x?xn)
(xi?x0)?(xi?xi?1)(xi?xi?1)?(xi?xn)nx?xj?? , (i?0,1,?,n)
x?xj?0ijj?ili(x)ÊÇn´Î¶àÏîʽ£¬Âú×ã
?0li(xj)???1Áî
nj?ij?i
?n?x?xj??Ln(x)??yili(x)??yi?? £¨4£© ?i?0i?0?j?0xi?xj??j?i?n