£¨3£©Æ½ÐÐÓÚzÖáµÄÆ½Ãæ£» £¨4£©Í¨¹ýzÖáµÄÆ½Ãæ£» £¨5£©Æ½ÐÐÓÚxÖáµÄÆ½Ãæ£» £¨6£©Í¨¹ýÔµãµÄƽԡ£ 3£®3x?7y?5z?4?0¡£ 4. 2x?9y?6z?121?0¡£ 5£®x?3y?2z?0¡£ 6. 3x?y?0»òx?3y?0¡£ 7£®x?y?2z?4?0¡£ 8£®£¨1£©y?5?0£» £¨2£©x?3y?0£» £¨3£©9y?z?2?0¡£
ϰÌâ8¡ª3
x?4y?1z?3¡£ 3.£¨1£©Æ½ÐУ» £¨2£©´¹Ö±£» £¨3£©ÔÚÆ½ÃæÄÚ¡£ ??215?x?3?25x?3yz?2?x?1yz?2??;?y?t4£®. ??. 5.
?213?421?z??2?3t?1£®1£® 2.
6£®??0 7. x?3y?z?4?0¡£ 8. cos??0¡£ 9. ÔÚÆ½ÃæÄÚ¡£
y?2z?4x10£®¡£ 11. 8x?9y?22z?59?0. 12. x?y?z?0. ???231?12x?15y?33z?117?032?522?13£®??,,?¡£ 14. ¡£ 15. ?
4x?y?z?1?03332???
µÚ¾ÅÕÂ
ϰÌâ9¡ª1
1£®£¨1£©Ö±Ïߣ¬Æ½Ã棻£¨2£©Ö±Ïߣ¬Æ½Ã棻£¨3£©Ô²£¬Ô²ÖùÃæ£»£¨4£©Ë«ÇúÏߣ¬Ë«ÇúÏßÖùÃæ¡£ 2£®£¨1£©Ò»µã£¬Ò»Ö±Ïߣ»£¨2£©Ò»µã£¬Ò»Ö±Ïß¡£ 3. y2?zh2?5x. 4. x2?y2?z2?0¡£ 5£®ÈÆxÖ᣺4x2?9(y2?z2)?36£»ÈÆyÖ᣺4(x2?z2)?9y2?36¡£
ϰÌâ9¡ª2
x2y22£¨1£©xOyÆ½ÃæÉÏÍÖÔ²??1ÈÆxÖáÐýת¶ø³É£»
49y22 £¨2£©xOyÆ½ÃæÉϵÄË«ÇúÏßx??1ÈÆyÖáÐýת¶ø³É£»
4 £¨3£©xOyÆ½ÃæÉϵÄË«ÇúÏßx2?y2?1ÈÆxÖáÐýת¶ø³É£» £¨4£©yOzÆ½ÃæÉϵÄÖ±Ïßz?y?aÈÆzÖáÐýת¶ø³É¡£
ϰÌâ9¡ª3
2£®Ä¸Ï߯½ÐÐÓÚxÖáµÄÖùÃæ·½³Ì£º3y2?z2?16£»Ä¸Ï߯½ÐÐÓÚyÖáµÄÖùÃæ·½³Ì£º¾¼ÃѧԺѧÉú»áѧϰС×é
17
3x2?2x2?16¡£
222??y2?z2?1?x2?y2?z2?1?x?y?z?13£®?£»?£» ?2¡£ 2x?0x?0?y?z?1???3?x?cost?2?x?1?3cos????3?4£®£¨1£©?y?£¨2£©?y?3sin?(0???2?)¡£ cost(0?t?2?)£»
2??z?0??z?3sint???z?z??x2?y2?a2?x2?4z2?2x?2z?2?0?y?asin?x?acos5£®?£»? b£»?b¡£ 6.??z?0?y?0?x?0?y?0??7£®£¨1£©Ô²£» £¨2£©ÍÖÔ²£» £¨3£©Ë«ÇúÏߣ» £¨4£©Å×ÎïÏߣ» £¨5£©Ë«ÇúÏß¡£
ϰÌâ²Î¿¼½â´ð
µÚÊ®ÕÂ
ϰÌâ10¡ª1
1£®t2f(x,y)¡£
2. (x?y)xy?(xy)2x¡£
3£®£¨1£©?(x,y,z)|x?0,y?0,z?0?£» 4£®(x,y)|y2?2x¡£
£¨2£©(x,y,z)|r2?x2?y2?z2?R2¡£
????ϰÌâ10¡ª2
1£®£¨1£©?xz?(2x?y)?x?(?x)2£» ?yz?(1?x)?y£» ?z?(2x?y)?x?(1?x)?y??x?y?(?x)2£» £¨2£©?xz?0.21;?yz?0.1;?z?0.32¡£ 2£®1£»1+2ln2. 7£®£¨1£©
?z??x22xysiny2. 1?,13. 5. ?1,0; 6. . 225?z?2x£» ?2x?yy2siny1. 4.
£¨2£©£¨3£©
y?z?,?x2x(1?xy)2?zx?£» ?y1?xy2yy1y?zxx?2sinsin?coscos£» ?xxyxyxy18 ¾¼ÃѧԺѧÉú»áѧϰС×é
y1y?zxxx??2coscos?sinsin£» ?yyxxyxyyyy?z?z1x??23xln3,?3ln3£» £¨4£©?x?yxx?z£¨5£©?yesin?xy(1??xycos?xy)£¬
?x?znxy ?xesi?(1??xyco?sxy)£»
?y?z1?z1£¨6£©£» ?,??xx?lny?yy(x?lny)yyyy?z1?z1£¨7£©?sin?cos,?cos£»
?x2xxxxx?yxx?u?u?u£¨8£©???et??1,?et?,??tet??e??£»
?t?????u£¨9£©?e???[cos(???)?sin(???)]£¬
???u ?e???[cos(???)?sin(???)]¡£
??8£®
?¡£ 6??dy£» y???xy?xy1?1??9£®£¨1£©dz??ye?dx?xe???x?y?x????dydx£¨2£©dz?£» ?1?x21?y2£¨3£©dz?(xd?ydx)cos(xy)£»
4xy(xdy?ydx)£¨4£©dz?£» 222(x?y)£¨5£©dz?(2e?y?£¨6£©du?ex(x2232x)dx?2xe?ydy£»
?y?z2)[(3x2?y2?z2)dx?2xydy?2xzdz]£»
£¨7£©du?xxy[y(1?lnx)dx?xlnxdy]£»
3dx?2dy?dz£¨8£©du? d£»
3x?2y?z2(x?y)(dx?dy)£¨9£©du?¡£ 41?(x?y)10£®£¨1£©dz??4(dx?dy)£» £¨2£©dz?2dx?dy¡£ 11£®dz??0.2,?z??0.20404¡£
¾¼ÃѧԺѧÉú»áѧϰС×é
19
ϰÌâ10¡ª3
?z?3x2sinycos(cos?siny)£¬ ?x?z ?x3(si3ny?co3sy)?2x3sinycosy(siny?cosy)¡£
?y1£®
?z2x3x22£®£¬ ?ln(3x?2y)??xy2(3x?2y)y2?z2x22x2 ¡£ ??3ln3(x?2y)?2?yy(2x?2y)y?z2(u?2v)(u?3v)?z(2v?u)(9u?2v)4£®¡£ ?,??u?v(u?2u)2(v?2u)2?z?2(2x?y)2x?y[ln(2x?y)?1]£¬ ?x?z ?(2x?y)2x?y[ln2(x?)?1]¡£
?y?z?F?F?z?F?F7£®?cos??sin?,?rcos??rsin?¡£
?r?x?y???y?xdz8£®??et?e?t¡£
dt4dz9£®?esint?2t(cost?6t2)¡£
dtdz3?12t2?10£®¡£
32dt1?(3t?4t)5£®
dzex(1?x)11£®¡£ ?dt1?x2e2xdz?41?2?2????3??sec3t??t12£®??¡£ ?32dt?tt??2t??du13£®?eaxsinx¡£ 14. ?1¡£ 15. 2¡£
dx?y?zdz116£®¡£ ?2,??xx?y2dx1?x217£®
y??zdz??yxy?1,?xy???(x)lnx??¡£ ?xdxx??ϰÌâ10¡ª4
dyb2x??2¡£ 1£®dxaydyy[cos(xy)?exy?2x]?2. xydxx[x?e?cos(xy)]¾¼ÃѧԺѧÉú»áѧϰС×é
20