ÓÖÓÉÌâÉ裬£¨X £¬Y£©µÄ¿ÉÄÜȡֵΪ£¨-1£¬-1£©£¬£¨-1£¬1£©£¬£¨1£¬-1£©¼°£¨1£¬1£©.ÏàÓ¦µÄ¸ÅÂÊΪ
P(?1,?1)?P{U??1ÇÒU?1}?P{U??1}?14P(?1,1)?P{U??1ÇÒU?1}?P{?}?0
P(1,?1)?P{U??1ÇÒU?1}?P{?1?U?1}?2
4P(1,1)?P{U??1ÇÒU?1}?P{U?1}?14 ¹Ê£¨X £¬Y£©µÄÁªºÏ¸ÅÂÊ·Ö²¼Îª
X Y -1 1 -1 1/4 0 1 2/4 1/4
µÚÈýÕ¡¢Ëæ»ú±äÁ¿µÄÊý×ÖÌØÕ÷
Ò»¡¢Ñ¡ÔñÌ⣺
?0,x?11£®ÉèËæ»ú±äÁ¿XµÄ·Ö²¼º¯ÊýΪF(x)???x4,0?x?1 £¬ÔòEX= £¨??1,x?1A£®?140xdx B£®?1104x5dx C£®
?11??04x4dx D£®?0x4dx??1xdx
2£®ÉèXÊÇËæ»ú±äÁ¿£¬x0ÊÇÈÎÒâʵÊý£¬EXÊÇXµÄÊýѧÆÚÍû£¬Ôò £¨ A£®E(X?x2?E(X?EX)2 B£®E(X?x220)0)?E(X?EX) C£®E(X?x2220)?E(X?EX) D£®E(X?x0)?0
3£®ÒÑÖªX~B(n,p)£¬ÇÒEX=2.4£¬EX=1.44£¬Ôò²ÎÊýn,pµÄֵΪ £¨A£®n= 4£¬p= 0.6 B£®n= 6£¬p= 0.4 C£®n= 8£¬p= 0.3 D£®n= 24£¬p= 0.1
4£®ÉèXÊÇËæ»ú±äÁ¿£¬ÇÒEX?a£¬EX2?b£¬cΪ³£Êý£¬ÔòD£¨CX£©=£¨ A£®c(a?b2) B£®c(b?a2)
£©
£©
£© £©C£®c(a?b) D£®c(b?a)
5£®ÉèËæ»ú±äÁ¿XÔÚ[a£¬b]ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬ÇÒEX=3£¬DX=4/3£¬Ôò²ÎÊýa£¬bµÄֵΪ £¨ £© A£®a= 0£¬b= 6 B£®a= 1£¬b= 5 C£®a= 2£¬b= 4 D£®a= -3£¬b= 3
6£®Éè?·þ´ÓÖ¸Êý·Ö²¼e(?)£¬ÇÒD?=0.25£¬Ôò?µÄֵΪ £¨ £© A£®2 B£®1/2 C£®4 D£®1/4
7£®ÉèËæ»ú±äÁ¿?~N£¨0£¬1£©£¬?=2?+1 £¬Ôò ?~ £¨ £© A£®N£¨1£¬4£© B£®N£¨0£¬1£© C£®N£¨1£¬1£© D£®N£¨1£¬2£©
8£®ÉèËæ»ú±äÁ¿XµÄ·½ ²îDX =?£¬ÔòD(aX?b)= £¨ £© A£®a?2?b B£®a??b C£®a? D£®a?
9£®ÈôËæ»ú±äÁ¿XµÄÊýѧÆÚÍûEX´æÔÚ£¬ÔòE[E(EX)] = £¨ £© A£®0 B£®EX C£®(EX) D£®(EX)
10£®ÈôËæ»ú±äÁ¿XµÄ·½²îDX´æÔÚ£¬ÔòD[D(DX)]= £¨ £© A£®0 B£®DX C£®(DX) D£®(DX)
11£®ÉèËæ»ú±äÁ¿XÂú×ãD£¨10X£©=10£¬ÔòDX= £¨ £© A£®0.1 B£®1 C£®10 D£®100
12£®ÒÑÖªX1£¬X2£¬X3¶¼ÔÚ[0£¬2]ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬ÔòE(3X1?X2?2X3)= £¨ £© A£®1 B£®2 C£®3 D£®4
13£®ÈôX1ÓëX2¶¼·þ´Ó²ÎÊýΪ1²´ËÉ·Ö²¼P£¨1£©£¬ÔòE(X1?X2)= £¨ £© A£®1 B£®2 C£®3 D£®4
14£®ÈôËæ»ú±äÁ¿XµÄÊýѧÆÚÍûÓë·½²î¾ù´æÔÚ£¬Ôò A£®EX?0 B£®DX?0 C£®(EX)?DX D£®(EX)?DX
22232322222
2222215£®ÈôËæ»ú±äÁ¿X~N(2,2)£¬ÔòD(X)= £¨ £© A£®1 B£®2 C£®1/2 D£®3
16£®ÈôXÓëY¶ÀÁ¢£¬ÇÒDX=6£¬DY=3£¬ÔòD(2X-Y£©= £¨ £© A£®9 B£®15 C£®21 D£®27
17£®ÉèDX = 4£¬DY = 1£¬?XY= 0.6£¬ÔòD(2X-2Y) = £¨ £© A£®40 B£®34 C£®25.6 D£®17.6
18£®ÉèXÓëY·Ö±ð±íʾÅ×ÖÀһöӲ±Òn´Îʱ£¬³öÏÖÕýÃæÓë³öÏÖ·´ÃæµÄ´ÎÊý£¬Ôò?XYΪ£¨ £© A£®1 B£®-1
C£®0 D£®ÎÞ·¨È·¶¨
19£®Èç¹ûXÓëYÂú×ãD(X+Y) = D(X-Y), Ôò £¨ £© A£®XÓëY¶ÀÁ¢ B£®?XY= 0 C£®DX-DY = 0 D£®DXDY=0
20£®ÈôËæ»ú±äÁ¿XÓëYµÄÏà¹ØÊý?XY=0£¬ÔòÏÂÁÐÑ¡Ïî´íÎóµÄÊÇ £¨ £© A£®XÓëY±Ø¶ÀÁ¢ B£®XÓëY±Ø²»Ïà¹Ø C£®E (XY ) = E(X) EY D£®D (X+Y ) = DX+DY
212¶þ¡¢Ìî¿ÕÌ⣺
1. ÉèX±íʾ10´Î¶ÀÁ¢Öظ´Éä»÷ÃüÖеĴÎÊý£¬Ã¿´ÎÉä»÷ÃüÖÐÄ¿±êµÄ¸ÅÂÊΪ0.4£¬ÔòEX= . 2. ÈôËæ»ú±äÁ¿X ~ B£¨n, p£©£¬ÒÑÖªEX = 1.6£¬DX = 1.28£¬Ôò²ÎÊýn = £¬P = . 3. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪpµÄ¡°0¡ª1¡±·Ö²¼£¬ÇÒDX = 2/9£¬DX?221,EX?£¬Ôò92EX = .
4. ÈôËæ»ú±äÁ¿XÔÚÇø¼ä [a , b]·þ´Ó¾ùÔÈ·Ö²¼£¬EX = 3£¬DX = 1/3£¬Ôòa = ,b = . 5. ÈôËæ»ú±äÁ¿XµÄÊýѧÆÚÍûÓë·½²î·Ö±ðΪEX = 2£¬DX = 4£¬ÔòEX= . 2?)6. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪ?²´ËÉ·Ö²¼ X~P(£¬ÇÒEX = 1£¬ÔòDX = .
7. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪ?Ö¸Êý·Ö²¼X~e(?)£¬ÇÒEX = 1£¬ÔòDX = . 2
8. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪ2Óë?µÄÕý̬·Ö²¼X~N(2,?)£¬ÇÒP{2 < X < 4} = 0.3, Ôò
2P{X<0} = .
9. ÈôXÊÇÒ»Ëæ»ú±äÁ¿£¬EX = 1£¬DX = 1£¬ÔòD£¨2X - 3£©= .
10. ÈôXÊÇÒ»Ëæ»ú±äÁ¿£¬D£¨10X£©= 10£¬ÔòDX = . X2X1?1)= 2£¬D(?1)?£¬ÔòEX = . 11. ÈôXÊÇÒ»Ëæ»ú±äÁ¿£¬E(22212. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪnÓëpµÄ¶þÏî·Ö²¼X ~ B£¨n, p£©£¬EX = 2.4£¬DX = 1.44£¬Ôò
p{X?1} = . 13. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪ2Óë22µÄÕý̬·Ö²¼X ~ N(2,2)£¬ÔòD(X)= . 14. ÈôËæ»ú±äÁ¿X ·þ´Ó²ÎÊýΪ2Ö¸Êý·Ö²¼X ~e£¨2£©£¬ÔòE(X?X)= . 15. ÈôËæ»ú±äÁ¿XµÄ¸ÅÂÊÃܶÈΪ f(x)??2212?2x,0?x?1 £¬ÔòEX = £¬DX = . 0,ÆäËû??0£¬x?0?316. ÈôËæ»ú±äÁ¿XµÄ·Ö²¼º¯ÊýΪF(x)??x,0?x?1 £¬ÔòEX = . ?1,x?1?17. ÈôËæ»ú±äÁ¿X1ÓëX2¶¼ÔÚÇø¼ä [0 £¬2]ÉÏ·þ´Ó¾ùÔÈ·Ö²¼£¬ÔòE(X1?X2)= . 18. È˵ÄÌåÖØÊÇËæ»ú±äÁ¿X£¬EX = a, DX = b, 10¸öÈËµÄÆ½¾ùÖØÁ¿¼ÇΪY£¬ÔòEY = .
19. ÈôXÓëY¶ÀÁ¢£¬ÇÒDX = 6£¬DY = 3£¬ÔòD£¨2X-Y£©= . 20. ÈôËæ»ú±äÁ¿XÓëY¶ÀÁ¢£¬ÔòXÓëYµÄÏà¹ØÏµÊýΪR£¨X£¬Y£©= ¡£
Èý¡¢ÅжÏÌ⣺
1. ¶ÔÈÎÒâÁ½¸öËæ»ú±äÁ¿XÓëY¶¼ÓÐE£¨X+Y£©= EX + EY ¡£ 2. ÈôXÊÇÁ¬ÐøËæ»ú±äÁ¿£¬ÔòÓÐD£¨X+Y£©= DX + DY ¡£ 3. ÈôËæ»ú±äÁ¿XÓëY¶ÀÁ¢£¬ÔòÓÐD£¨X+Y£©= DX + DY ¡£ 4. ÈôËæ»ú±äÁ¿XÓëY¶ÀÁ¢£¬ÔòÓÐE(XY)?EX?EY¡£ 5. ÈôËæ»ú±äÁ¿XÓëY¶ÀÁ¢£¬ÔòÓÐD(XY)?DX?DY¡£
6. ÈôXÓëYÊÇÁ½¸öËæ»ú±äÁ¿£¬ÇÒÓÐE£¨X+Y£©= EX + EY£¬ÔòÓÐD£¨X+Y£©= DX + DY ¡£ 7. ÈôXÓëYÊÇÁ½¸öËæ»ú±äÁ¿£¬ÇÒÓÐE(XY)?EX?EY£¬ÔòÓÐD£¨X+Y£©= DX + DY ¡£ 8. ÈôXÓëYÊÇÁ½¸öËæ»ú±äÁ¿£¬ÇÒÓÐE(XY)?EX?EY£¬ÔòÓÐCoV£¨X£¬Y£©= 0 ¡£ 9. ÈôXÓëYÊÇÁ½¸öËæ»ú±äÁ¿£¬ÇÒÓÐE(XY)?EX?EY£¬ÔòÓÐ?XY?0¡£ 10. ÈôXÓëYÊÇÁ½¸öËæ»ú±äÁ¿£¬ÇÒ?XY?0£¬ÔòÓÐCoV£¨X£¬Y£©= 0 ¡£