×éºÏÊýѧÖг£¼ûµÄ¼ÆÊý·½·¨

ÉòÑôÀí¹¤´óѧѧʿѧλÂÛÎÄ

5 ×Ü ½á

×éºÏÊýѧÊÇÒ»ÃŹÅÀϵÄѧ¿Æ¡£¹«Ôª1666Äê,Ìì²ÅÊýѧ¼Ò¡¢¼ÆËã»úÏÈÇýÀ³²¼Äá´ÄΪËüÆðÃûΪ¡°×éºÏѧ¡±(Combinatorics),²¢Ô¤ÑÔÁËÕâÒ»Êýѧ·ÖÖ§µÄµ®Éú¡£Èç½ñ,×éºÏÊýѧµÄ˼ÏëºÍ¼¼Çɲ»½öÓ°Ïì×ÅÊýѧµÄÐí¶à·ÖÖ§,¶øÇҹ㷺µØÓ¦ÓÃÓÚ×ÔÈ»¡¢Éç»áµÄ¼¸ºõËùÓпÆÑ§ÁìÓò¡£

±¾ÎÄ¿ªÆªÐ÷ÂÛ²¿·Ö×ÅÖØ½éÉÜÁË×éºÏÊýѧµÄÑо¿±³¾°ºÍÒâÒå,Õ¹ÏÖÁË×éºÏÊýѧÔÚ¿ÆÑ§ÒÔ¼°Éú»îÖеĸ÷¸öÁìÓòµÄÖØÒªÓ¦ÓüÛÖµ¡£ÆäÖÐÂÛÎÄÖ÷Ì岿·ÖÖ÷Òª½éÉÜÁË×éºÏÊýѧÖг£¼ûµÄ¼ÆÊý·½·¨,ÀýÈçCatalanÊý¡¢µÚÒ»Àà¡¢µÚ¶þÀàStirlingÊý¡¢FineÊýºÍP¨®lyaÒÔ¼°×î½ü¸Õ³öÏÖ²»¾ÃµÄ¸ñ·¼ÆÊý¡£ÔÚµÚ¶þÕÂ,´ÓÃ÷°²Í¼ÓëCatalanÊýµÄ·¢Õ¹ÀúÊ·½²Æð,ͨ¹ýCatalanÊýµÄÆðÔ´,¸ø³öÁËCatalanÊýÁе͍ÒåºÍÍÆµ¼¹ý³Ì,²¢¹éÄÉÁËCatalanÊýµÄÈô¸ÉÐÔÖÊ,×îºó¾ÙÀý˵Ã÷CatalanÊýÔÚÊÛÆ±ÎÊÌâ¡¢³ÇÊÐÏß·ÎÊÌâºÍ³ªÆ±Ñ¡¾ÙÎÊÌâÔÚÉú»îʵ¼ÊÖеÄÓ¦Óá£ÔÚµÚÈýÕÂ,ºÍCatalanÊýÒ»Ñù,¿ªÊ¼½éÉÜÁËStirlingµÄÆðÔ´¡¢¶¨ÒåºÍÐÔÖÊ,ÓÉÓÚStirlingÊýºÍ¸ÅÂÊÂÛ֪ʶÁªÏµ½ôÃÜ,ËùÒÔºóÃæÓ¦Óò¿·Ö½áºÏ¸ÅÂÊÂÛÓйØÖªÊ¶,ÖØµã½éÉÜÁËStirlingÊýÔÚ×éºÏºãµÈʽ֤Ã÷ºÍ¶¨ÀíÖ¤Ã÷·½ÃæµÄÓ¦Óá£ÔÚµÚËÄÕÂ,ÖØµã½éÉÜÁËÁ½Àà±È½Ï³£¼ûµÄ×éºÏÊý,¼´FineÊýºÍP¨®lya¼ÆÊý¶¨Àí¡£ÔÚFineÊýÒ»²¿·Ö,Òý½øÁ˸ñ·¾¶µÄ¸ÅÄî,ÒÔDyck¸ñ·µÄÐÎʽ¸ø³öÁËFineÊýµÄ¶¨Òå,×îºó¸ù¾ÝCatalanÊýºÍFineÊýÖ®¼äµÄ¹ØÏµ,×ܽáÁËFineÊýµÄÈô¸ÉÐÔÖʲ¢ÀýÁ˾ÙFineÊýµÄһЩ×éºÏ½âÊÍ¡£ÔÚP¨®lya¼ÆÊýÒ»²¿·Ö,ͨ¹ýÊýѧÖÐÓйØÈºµÄ֪ʶÒý³öP¨®lya¶¨Àí,×îºó¼òµ¥¾ÙÀý˵Ã÷P¨®lya¶¨ÀíÔÚ×éºÏ¼ÆËãÖеļòµ¥Ó¦Óá£

×éºÏÊýѧ·¢Õ¹ÖÁ½ñ,ÒÑÓÐºÜ¶à¼ÆÊý·½·¨,ÓÉÓÚÆª·ùÓÐÏÞ,±¾ÎĽö½ö¼òµ¥½éÉÜÁ˼¸ÖÖ³£¼ûµÄ×éºÏÊý,Éæ¼°µÄÒ²¶¼ÊÇһЩ¼òµ¥µÄÓ¦ÓÃÎÊÌâ¡£Ëæ×żÆËã»úµÄ²»¶Ï·¢Õ¹,×éºÏÊýѧÔÚ¼ÆËã»úÓ¦Ó÷½ÃæÒѾ­Õ¼ÓÐÊ®·ÖÖØÒªµÄµØÎ»,ÏàÐÅÔÚ²»¾ÃµÄ½«À´,×éºÏÊýѧ±Ø½«ÔÚÕâһеÄÁìÓòÖжÀÕ¼÷¡Í·¡£

37

ÉòÑôÀí¹¤´óѧѧʿѧλÂÛÎÄ

Ö л

ÔÚÂÛÎÄÍê³ÉÖ®¼Ê,Ê×ÏÈÓÉÖÔ¸ÐлÎҵĵ¼Ê¦¶ÎºìÁáÀÏʦ,ÔÚÕâ¶Îʱ¼äÀï,ÂÛÎÄ´ÓÑ¡Ìâµ½¶¨¸å,¶¼ÊÇÔÚ¶÷ʦµÄϤÐÄÖ¸µ¼ÏÂÍê³ÉµÄ,ÎÒËùÈ¡µÃÿһµã³É¼¨¶¼Äý¾Û×Ŷ÷ʦµÄÐÄѪºÍº¹Ë®¡£¶÷ʦÑϽ÷ÈÏÕæµÄÖÎѧ̬¶È¡¢Ô¨²©µÄ֪ʶºÍÕýÖ±µÄÈ˸ñ,ÒѾ­ÉîÉîµØÃú¿ÌÔÚÎÒµÄÐÄÖÐ,Ëü²»½ö¼¤Àø×ÅÎÒÔÚÉòÑôÀí¹¤´óѧµÄÉú»î,¶øÇÒ½«»á¹á×¢µ½ÎÒ½ñºóµÄ¹¤×÷ºÍ×öÈËÖÐ,ʹÎÒÖÕÉíÊÜÒæ¡£Ôڴ˱ÏÒµÖ®¼Ê,Ïò¶ÎÀÏʦ±íʾÖÔÐĵĸÐлºÍ³ç¸ßµÄ¾´Òâ!

ͬʱ¶ÔÍõÀÏʦ¡¢ÁõÀÏʦ¸øÓèÎҵİïÖúºÍÖ¸µ¼±íʾÉîÉîµÄ¸Ðл!Ò²ºÜ¸ÐлÍõ¿¡½ÜÀÏʦ¡¢Ðí¿ÉÀÏʦ¶ÔÎÒѧϰÉϵİïÖú¡£

ÔÚ×öÂÛÎĵĹý³ÌÖÐ,ÍõÃ÷Զͬѧ¸øÓèÁËÎÒÐí¶à°ïÖú,Ôڴ˶ÔËû±íʾÖÔÐĸÐл! ¸ÐлÎÒµÄÇ×ÈË,ÊÇËûÃǸøÁËÎÒ¾­¼ÃÉϵÄÖ§ÖúºÍÉú»îÉϵĹØÐÄ,²ÅʹÎÒ¾²ÏÂÐÄÀ´Ñ§Ï°,ÔÚÎҳɳ¤µÄµÀ·ÉÏËûÃǸ¶³öÁË×´óÎÞ˽µÄ°®!ÎÒÔÚÕâÀïÏòËûÃÇÕæÐĵصÀÉù:лл!

ÔÚÎÒÂþ³¤µÄÇóѧµÀ·ÉÏ,ºÜ¶àÀÏʦ¡¢Í¬Ñ§ºÍÅóÓÑÒ»Ö±ÔÚ¹ØÐÄÎÒºÍÖ§³ÖÎÒ,²ÅʹÎÒ˳ÀûÍê³Éѧҵ,½è´Ë»ú»á,ÏòËùÓйØÐĺÍÖ§³ÖÎÒµÄÈËÖÂÒÔ×î³ÏÖ¿µÄлÒâ!

×îºó,Ïò¸÷λ²Î¿¼ÎÄÏ×µÄ×÷Õß±íʾ¸Ðл¡£

38

ÉòÑôÀí¹¤´óѧѧʿѧλÂÛÎÄ

²Î¿¼ÎÄÏ×

[1]ÁõÇÛÓ¢.¾­µäCatalanÊýµÄ×éºÏ±³¾°[J].Î÷±±´óѧѧ±¨(×ÔÈ»¿ÆÑ§°æ).2003,33(1):1-3

[2]Ò󽣺ê. ×éºÏÊýѧ.»úе¹¤Òµ³ö°æÉç[M].2006:98-100

[3]Íõ·áЧ,¸µÀö.¹ØÓÚCatalanÊýµÄ¼¸ÖÖÇó·¨[J].ÉÂÎ÷¹¤Ñ§ÔºÑ§±¨.2000,16(1):1-3 [4]ÕÔ²Ö÷.Fine¸ñ·ºÍÓнû´íÅÅ[D].´óÁ¬Àí¹¤´óѧ,˶ʿ.2006:4-17 [5]ÐìµÀ.ÊÛÆ±ÎÊÌâÓëCatalanÊý[J].¸§ÖÝʦרѧ±¨.1999,(3):1-2 [6]ÓÚÓ¦Áú.Êýѧ̽¾¿ÐÔѧϰµ¼¶Á[M].ÉϺ£³ö°æÉç.2002:22-25

[7]Íõºì,ÑîÑÅÇÙ,ÍõÑÞ»Ô.µÚÒ»ÀàStirlingÊýºÍµÚ¶þÀàStirlingÊýµÄ¹ØÏµÊ½[J].¸ßʦÀí¿Æ ѧ¿¯.2008,28(6):1-3

[8]ÕŽ¨¹ú.µÚ¶þÀàStirlingÊýµÄÁ½¸ö¼ÆË㹫ʽ[J].ÉÌÇðÖ°Òµ¼¼ÊõѧԺ±¨.2002,1(3):1-2 [9]ËïÆ½,ÍõÌìÃ÷.StirlingÊýµÄ¸ÅÂʱíʾºÍÓ¦ÓÃ[J].Êýѧѧ±¨.1998,41(2):1-9 [10]µË¼ÇÑø.Polya¼ÆÊý¶¨Àí¼°ÆäÈô¸ÉÐÔÖÊ[J].ÉØ¹ØÊ¦×¨Ñ§±¨.1987,(2):4-7 [11](ÃÀ)Richard A.Brualdi.×éºÏÊýѧ[M].·ë˳çô,ÂÞÆ½,Åáΰ¶«.µÚÈý°æ.»úе¹¤Òµ³ö°æ Éç.2001:179-187

[12](ÃÀ)William Feller.¸ÅÂÊÂÛ¼°ÆäÓ¦ÓÃ[M].ºúµÏº×.µÚÈý°æ.ÈËÃñÓʵç³ö°æ Éç.2006:52-56

[13] RO GER EGGL ETON,RICHARD GUY.The Mean-ing of Catalan Numbers[J].Mathematics Magazine,1988,(10):1-4

[14]L.Carlitz.Degenerate Stirling,Bernoulli and Eulerian numbers[J].Utilitas Math,15:51-88.1979

[15]ë¿¡³¬.¸ÅÂÊ·½·¨ÔÚ×éºÏÊýѧÖеÄÓ¦ÓÃ[D].Öйúº£Ñó´óѧ,˶ʿ.2007:21-23 [16]Yuan Shih Chow,Henry Teicer.Probability Theory[M],Second Edition.New York:Springer-Verlag,1988:33-35

[17]Deutsch E,Shapiro L.A survey of the Fine number[M].Discrete Math.,2001,241:241-265

[18]¿µÇìµÂ.×éºÏѧ±Ê¼Ç[M].¿ÆÑ§³ö°æÉç.2009:65-67

39

ÉòÑôÀí¹¤´óѧѧʿѧλÂÛÎÄ

¸½Â¼A Ó¢ÎÄÔ­ÎÄ

Combinatorial Mathematics Analyses

Combinatorial mathematics, also known as discrete mathematics, is the study of the science of discrete objects. Combinatorial mathematics is the computers after appearing rapidly develop a branch of mathematics, along with the development of computer science, combinatorial mathematics the importance of increasingly prominent. The electronic computer process information is only use \or is the code in this digital information. So the processing of discrete objects became the core of computer science, and combinatorial mathematics is the study of the science of discrete objects. Modern mathematics research content mainly includes two aspects: on the one hand, it is the object of continuous research, such as analysis, algebra, etc, on the other hand, is the study of the discrete objects combination mathematics.

Combinatorial mathematics research accord with certain condition configuration object, counting and structure, etc. Discrete configuration problems are the combination of mathematics research content, mainly including: (1) the existence of the configuration; (2) the structure of the configuration of sexual problems; (3) the count of configuration; (4) the configuration optimization problem.

In 1666, the combination of art, \the milestone, in the next three hundred years, combinatorial mathematics has made rapid development, especially since the 1940 s, the wide application of electronic computers to combinatorial mathematics has had a huge impact, combinatorial mathematics and computer science in combination won the broad space for development, and also for computer science laid a theoretical foundation. Combinatorial mathematics not only computer technology in network optimization, coding and cryptography has an important application value, in the enterprise management, traffic laws row, financial analysis, etc all have important applications. In the 2 l century, combinatorial mathematics will close with computer science to move forward, ZuGeLun skills will be computerized, and the solution for all the important

40

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)