ÏÖ´úÊý×ÖÐźŴ¦ÀíʵÑ鱨¸æ

[a(1) a(2) a(3) a(4)]=[-0.7174-1.7952-0.6387-0.8167]

ͼ2.4 Yule-Walker·¨¹À¼ÆµÄ¹¦ÂÊÆ×ÓëÕæÊµ¹¦ÂÊÆ×¶Ô±È

Yule-Walker·¨(×ÔÏà¹Ø·¨)¹À¼ÆµÄ²ÎÊý£¬ÆäϵÊýµÄ·ûºÅÕýÈ·£¬µ«ÊýÖµ´óСÏà²î½Ï´ó£¬²¢ÇÒ¶à´ÎʵÑéµÄÏà²îÖµÒ²ºÜ´ó£¬²ÎÊý¹À¼ÆµÄ¾«¶ÈÔ¶Ô¶²»¹»¡£Òò´Ë´Óͼ2.4ÖÐÒ²ÄÜ¿´³ö£¬¸Ã·½·¨µÃµ½¹¦ÂÊÆ×ÓëÕæÊµµÄÆ×Ïà²îºÜ´ó £¨e£©Ð­·½²î·¨

ͼ2.5 Э·½²î·¨¹À¼ÆµÄ¹¦ÂÊÆ×ÓëÕæÊµ¹¦ÂÊÆ×¶Ô±È

²ÉÓÃЭ·½²î·¨¹À¼ÆµÄ²ÎÊý£¬ÆäϵÊýÓëÕæÊµµÄϵÊý·Ç³£½Ó½ü£¬¸Ã·½·¨Äܹ»½Ï¾«È·µÄ¹À¼Æ³ö¹¦ÂÊÆ×¡£ £¨f£©ÐÞÕýЭ·½²î

ͼ2.6 ÐÞÕýµÄЭ·½²î·¨¹À¼ÆµÄ¹¦ÂÊÆ×ÓëÕæÊµ¹¦ÂÊÆ×¶Ô±È

²ÉÓÃÐÞÕýµÄЭ·½²î·¨¹À¼ÆµÄ²ÎÊý£¬ÆäϵÊýËäȻûÓÐЭ·½²î·¨ºÍburg·¨ÄÇô¾«È·£¬µ«ÊǹÀ¼ÆÎó²îÒ²ºÜС¡£´Óͼ2.6ÖÐÒ²ÄÜ¿´³ö£¬¸Ã·½·¨Äܹ»½Ï¾«È·µÄ¹À¼Æ³ö¹¦ÂÊÆ×¡£ £¨g£©BurgËã·¨

ͼ2.7 burg·¨¹À¼ÆµÄ¹¦ÂÊÆ×ÓëÕæÊµ¹¦ÂÊÆ×¶Ô±È

²ÉÓÃburg¹À¼ÆµÄ²ÎÊý£¬ÆäϵÊý¼¸ºõµÈÓÚÕæÊµµÄϵÊý£¬·ÖÎöͼ2.7ÖÐÒ²ÄÜ¿´³ö£¬

¸Ã·½·¨·Ç³£¾«È·µÄ¹À¼Æ³ö¹¦ÂÊÆ×£¬¼¸ºõÓëÕæÊµµÄ¹¦ÂÊÆ×ÇúÏßÖØºÏ¡£ Ô´³ÌÐò£º clc;clear; N=256; NN=20000;

v1=normrnd(0,1,50,NN); v=v1(:,1:N); r=zeros(1,N); r1=zeros(1,N); w=0:2*pi/100:2*pi; P=zeros(1,length(w)); PP1=zeros(1,length(w)); PP2=zeros(1,length(w)); PP3=zeros(1,length(w)); PP4=zeros(1,length(w));

for s=1:50

x1=filter([1],[1,0.7348,1.8820,0.7057,0.8851],v1(s,:)); x=x1(1:N);

for k=1:N rx(k)=0; for n=k:N

rx(k)=rx(k)+x(n)*x(n-(k-1)); end

rx(k)=rx(k)/(N); end r=r+rx; for k=1:N rx1(k)=0; for n=k:NN

rx1(k)=rx1(k)+x1(n)*x1(n-(k-1)); end

rx1(k)=rx1(k)/(NN); end r1=r1+rx1;

for i=1:length(w) P(i)=P(i)+rx(1); for n=2:N

P(i)=P(i)+rx(n)*exp(-j*(n-1)*w(i))+rx(n)*exp(j*(n-1)*w(i)); end end

A=toeplitz(rx(1:4)',rx(1:4)); B=-rx(2:5)'; Ap=A\\B; b0=rx(1); for i=1:4

b0=b0+Ap(i)*rx(i+1); end

b0=sqrt(b0); for i=1:length(w) P1(i)=1; for k=1:4

P1(i)=P1(i)+Ap(k)*exp(-j*k*w(i)); end

P1(i)=b0^2/abs(P1(i))^2; end

PP1=PP1+P1; A=[]; for k=1:4 c=[]; for l=1:4 rr=0; for n=5:N

rr=rr+x(n-l)*x(n-k); end c=[c;rr]; end A=[A c];

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)