g_rmsdist -s topol.tpr -f traj.xtc -rms rmsdist.xpm -mean rmsmean.xpm -dt 10
==Q== Briefly explain the images: rmsmean in terms of structure and rmsdist in terms of flexibility/stability. Recall the information from earlier analysis and viewing the structure
´ÓʵÑé½Ç¶È½²£¬ÕâЩ¾àÀëͬÑùÖØÒª¡£Ô×Ó¼ä¾àÀëµÄ±ß½ç¿ÉÒÔÓÉNMRʵÑéÍÆ¶Ï¡ª¡ªÀûÓú˵ÄOverhauserЧӦ (NOE)¡ª¡ªÕâÒ²ÊÇNMR½á¹¹¼ÆËã¼äµÄÖ÷ÒªÍÆ¶¯Á¦¡£Èç¹ûµ°°×ÖÊÄ£ÐÍÕýÈ·£¬Õâ¸öÓ¦¸Ã¿ÉÒÔÔ¤ÆÚµÃµ½µÄNOEÐźţ¬¿ÉÒÔͨ¹ýMDÄ£ÄâÀ´¼ÆËã¡£ÕâЩÐźÅÓë¾àÀëÃÜÇÐÏà¹Ø£¬ÌرðÊÇr-3 ºÍ r-6 È¨ÖØµÄ¾àÀë¡£ÕâЩÐźÅÒ²¿ÉÒÔÓÃg_rmsdistÀ´¼ÆËã¡£
g_rmsdist -s topol.tpr -f traj.xtc -nmr3 nmr3.xpm -nmr6 nmr6.xpm -noe noe.dat -dt 10
¸ønmr3.cpm ºÍ nmr6.xpmÖØÐÂÉÏÉ«£¬¿´¿´ÕâЩ¾ØÕó £¬Ò²¿´¿´Îļþnoe.dat¡£ ==Q== What are the smallest 1/r^3 and 1/r^6 averaged distances in the simulation? ( T )
ËɳںÍÐò²ÎÁ¿
ÏòÁ¿µÄËɳڵļÆËãÓëÆä×ÔÉíÏà¹Ø¡£¶Ôµ°°×ÖÊ£¬Í¨³£°üÀ¨Ì¼¹Ç¼ÜN-H »ò²àÁ´C-HÏòÁ¿¡£ÕâÖÖ×ÔÏà¹Ø¸ø³öÁËÒ»¸öÏòÁ¿Äܱ£³ÖÆä·½Ïò¶à³¤Ê±¼äµÄÁ¿¶È£¬Òò¶øÎª±íÕ÷¿É±äÐÔºÍÎȶ¨ÐÔÌṩÁËָʾ¡£Ðò²ÎÁ¿ÊÇ×ÔÏà¹ØµÄ³¤³ÌÏÞÖÆ¡£Èç¹ûÒ»¸ö·Ö×ÓÄܹ»×ÔÓÉÐýת£¬Ðò²ÎÁ¿½«²»¿É±ÜÃâµØ¼õСµ½Á㣻µ«ÔÚ·Ö×Ó¿ò¼ÜÄÚ£¨ÄÚ²¿²Î¿¼¿ò¼Ü£©£¬Ðò²ÎÁ¿³£ÓÐÒ»¸öÃ÷È·µÄÖµ£¬Õâ¸öÖµ±íÃ÷×ÜÌåÎȶ¨ÐÔ¡£Í¨¹ý¹Ì¶¨£¨fitting mistake for fixing?£©µ°°×ÖÊ£¬Õâ¸ö²Î¿¼¿ò¼Ü¿ÉÒԹ̶¨ÏÂÀ´£¬Òò´ËÐò²ÎÁ¿¾ÍÈ·¶¨ÁË¡£ N-HÐò²ÎÁ¿¿ÉÒÔÓÃg_chi¼ÆËã¡£Õâ¸ö³ÌÐò¿ÉÒÔд³öÒ»¸ö.pdbÎļþ£¬¸ÃÎļþ°ÑÐò²ÎÁ¿¼ÓÈëÁËb-factor³¡£¬Ê¹¹Û¿´¸üÈÝÒס£¸Ã³ÌÐòÒ²¼ÆËãJ-couplings£¬Õâ¸ö²ÎÊý¿ÉÒÔºÍNMR µÄ½á¹ûÏà±È½Ï£¬»òÕßÓÃÓÚÖ¸µ¼NMRʵÑé¡£
g_chi -s topol.tpr -f traj.xtc -o order-parameters.xvg -p order-parameters.pdb -jc Jcoupling.xvg
¿´¿´.xvgÎļþÖеÄÐò²ÎÁ¿£¬²¢ÓÃPymol ²é¿´.pdbÎļþ£¬¸ù¾ÝÔÚb-factor³¡ÖеÄÖµ£¬¸ø²Ð»ùÉÏÉ«¡£
==Q== Write down the start and end residues, and the average value for the two regions having highest order parameters. ( T )
==Q== How do the order parameters compare to the fluctuations (RMSF)?
¹¹ÏóÖ÷³É·Ö·ÖÎö
See Leach Chapter 9.14 for more information on the following section.
Ò»¸ö³£Óõ쬵«³£³£¶ÔÖ®Àí½â²»ÉîµÄ·½·¨Êǹ켣µÄÖ÷³É·Ö·ÖÎö·¨¡£ÕâÖÖ·½·¨¡ª¡ªÓÐʱºòÒ²Ö¸¡°±¾Õ÷¶¯Á¦Ñ§£¨ED£©¡±¡ª¡ªÄ¿µÄÔÚÓÚ¼ø±ð´óÁ¿Ô×ÓµÄÕûÌåÔ˶¯²¢Òò´Ë½ÒʾÒþ²ØÔÚÔ×Ó²¨¶¯ºóÃæµÄ½á¹¹ÐÅÏ¢¡£ÔÚMDÖУ¬Á£×Ó²¨¶¯È·Êµ»¥Ïà¹ØÁª£¬ÒòΪÁ£×Ó¼äµÄ±Ë´Ë×÷Ó᣹ØÁªµÄ³Ì¶ÈÓдóÓÐС£¬µ«Ðè×¢ÒâµÄÊÇ£¬ÄÇЩͨ¹ý¼üÖ±½ÓÏàÁ¬»òÕ߱˴ËλÖýӽüµÄÁ£×Ó»á²úÉúг¶¯¡£Á£×ÓÖ®¼äµÄÔ˶¯Ïà¹ØÐÔ²úÉúϵͳ×ÜÌ岨¶¯ÖеĽṹ£¬¶ÔÓÚ´ó·Ö×ÓÀ´Ëµ£¬ÕâÖֽṹ³£³£ÓëÆä¹¦ÄܺÍÉúÎïÎïÀíÑ§ÌØÐÔÖ±½ÓÓйء£Òò´Ë£¬Ô×Ó²¨¶¯½á¹¹µÄÑо¿¿ÉÒÔ¶ÔÁ˽âÕâЩ´ó·Ö×ÓµÄÐÐΪÌṩÓмÛÖµµÄÐÅÏ¢¡£È»¶ø£¬ËüȷʵÐèÒªÏ൱³Ì¶ÈµÄÏßÐÔ´úÊýºÍ¶à±äÁ¿Í³¼Æ·½ÃæµÄ֪ʶ£¬À´½âÊͽá¹û²¢¼ø±ð¸Ã·½·¨µÄȱÏÝ¡£ÌرðÊÇ£¬PCAµÄÄ¿±êÊÇÓÃеıäÁ¿À´ÃèÊöÔʼÊý¾Ý£¬ÕâЩбäÁ¿ÓëÔʼ±äÁ¿ÏßÐÔ¹ØÁª¡£ÕâÒ²ÊÇPCA×îÖ÷ÒªµÄÎÊÌ⣺Ëü½ö½öÒÀ¾ÝÔ×ÓÔ˶¯¼äµÄÏßÐÔ¹ØÏµÀ´½âÊÍÎÊÌâ¡£
PCAµÄµÚÒ»²½Êǹ¹½¨Ð·½²î¾ØÕó£¬Ëü½«²¶×½Ã¿¶ÔÔ×Ó¼äµÄÔ×ÓÔ˶¯Ïà¹Ø¶È¡£Ð·½²î¾ØÕó´Ó¶¨ÒåÉÏ˵£¬ÊǸö¶Ô³Æ¾ØÕó¡£Õâ¸ö¾ØÕóËæºó½«ÓÃÓÚ·ÖÎö£¬²úÉúÒ»¸öÌØÕ÷ÏòÁ¿¾ØÕóºÍÌØÕ÷ÏòÁ¿µÄ¶Ô½ÇÏß¾ØÕó¡£Ã¿¸öÌØÕ÷ÏòÁ¿ÃèÊöÁËÁ£×ӵļ¯ÌåÔ˶¯£¬ÕâÀïÏòÁ¿µÄÖµ±íʾÏàÓ¦Ô×Ó²ÎÓëÁ˶àÉÙÔ˶¯¡£¸ø³öµÄÏà¹ØµÄÌØÕ÷ÖµµÈÓÚ²¨¶¯µÄ×ܺͣ¬ÕâЩ²¨¶¯ÒÔ¼¯ÌåÔ˶¯ÖÐÿ¸öÔ×ÓÀ´ÃèÊö£¬Òò´ËÊÇÓëÌØÕ÷ÏòÁ¿ÓйصÄÈ«²¿Ô˶¯µÄÒ»¸ö¶ÈÁ¿Öµ¡£Í¨³££¬ÏµÍ³ÖеĴó¶àÊý (>90%) Ô˶¯ÊÇÓÃÉÙÓÚ10¸öÌØÕ÷ÏòÁ¿»òÖ÷³É·ÖÀ´ÃèÊöµÄ¡£
з½²î·ÖÎö²úÉúÏ൱¶àµÄÎļþ£¬Òò´Ë×îºÃÔÚÒ»¸öеÄ×ÓÎļþ¼ÐÖÐÔËÐУº mkdir COVAR cd COVAR
з½²î¾ØÕóµÄ¹¹½¨ºÍ¶Ô½ÇÏß»¯¿ÉÓÃg_covar³ÌÐò¡£ÊäÈëÏÂÊöÃüÁî½øÐзÖÎö¡£×¢Ò⣬Õâ¿ÉÄÜÒª»¨·ÑһЩʱ¼ä¡£
g_covar -s ../topol.tpr -f ../traj.xtc -o eigenvalues.xvg -v eigenvectors.trr -xpma covar.xpm
==Q== What are the dimensions of the covariance matrix and what is the sum of the eigenvalues? ( T )
ÌØÕ÷ÖµÖ®ºÍÊÇϵͳ×ÜÔ˶¯ÐÔµÄÒ»¸ö¶ÈÁ¿¡£Ëü¿ÉÓÃÓڱȽϲ»Í¬Çé¿öϵ°°×ÖʵĿɱäÐÔ£¬µ«ÊǶԲ»Í¬´óСµÄµ°°×ÖʽøÐбȽÏʱ£¬¾ÍÄÑÒԵõ½ÓÐÒâÒåµÄ½âÊÍ¡£
ÏÖÔÚ£¬¿´¿´Ð·½²î¾ØÕó×ÔÉí£¬ËüÔÚcovar.xpmÎļþÀï¡£ xview covar.xpm
¾ØÕóÏÔʾÁËÔ×Ó¼äµÄз½²î¡£ºìÉ«±íʾÁ½¸öÔ×ÓÒ»ÆðÒÆ¶¯£¬¶øÀ¶É«±íʾËüÃDZ˴ËÏòÏà·´µÄ·½ÏòÔ˶¯¡£¶Ô½ÇÏß»¯ÏàÓ¦ÓÚÔçǰµÃµ½µÄRMSFͼ£¬ºìÉ«µÄÉî¶È±íʾ²¨¶¯µÄÕñ·ù´óС¡£
==Q== Look at the two most moving parts, excluding the termini. How do they move with respect to each other and to the rest of the protein? ´Óз½²î¾ØÕóÄÜ¿´µ½Ò»×é×éÏà¹Ø»ò·´Ïà¹ØÔ˶¯µÄÔ×Ó¡£ÕâÔÊÐíÍùÔ×Ó×éµÄ¼¯ÌåÔ˶¯ÖÐÖØÐÂдÈë×ÜÔ˶¯¡£ÎÒÃÇÌáµ½¹ý£¬ÌØÕ÷Öµ´¢´æÔÚeigenvalues.xvgÎļþÖУ¬Í¨¹ýÏàÓ¦ÌØÕ÷Öµ±íʾ³ö×ܲ¨¶¯¡£
==Q== Look at the file eigenvalues.xvg with a text editor. Calculate the percentage and cumulative percentage of the motion explained for the first five eigenvectors. ( T )
µäÐ͵أ¬×î³õÎå¸öÌØÕ÷Öµ½«²¶»ñÖ÷ÒªÔ˶¯£¬ÕâÏ൱ÓÚ >80% µÄ×ÜÔ˶¯¡£Èç¹û½âÊ͵Ä×ܲ¨¶¯½ÏµÍ£¬¾ÍÌáʾûÓÐÃ÷È·µÄ¼¯ÌåÔ˶¯¡£
ΪÁËÁ˽âÌØÕ÷ÖµµÄʵ¼ÊÒâÒ壬¿ÉÓÃg_anaeig¹¤¾ß×÷½øÒ»²½µÄ·ÖÎö¡£ÎªÁ˸ü½üµØ¿´¿´Ç°Á½¸öÌØÕ÷Öµ£¬ÊäÈëÒÔÏÂÃüÁ
g_anaeig -s ../topol.tpr -f ../traj.xtc -v eigenvectors.trr -eig eigenvalues.xvg -proj proj-ev1.xvg -extr ev1.pdb -rmsf rmsf-ev1.xvg -first 1 -last 1
g_anaeig -s ../topol.tpr -f ../traj.xtc -v eigenvectors.trr -eig eigenvalues.xvg -proj proj-ev2.xvg -extr ev2.pdb -rmsf rmsf-ev2.xvg -first 2 -last 2
ÌØÕ÷Öµ¶ÔÓ¦ÓÚÔ˶¯·½Ïò¡£Ñ¡Ïî-extrÑØ×ÅÑ¡¶¨µÄÌØÕ÷Öµ´Ó¹ì¼£ÖÐÌáÈ¡¼«¶Ë½á¹¹¡£°ÑÕâЩ½á¹¹µ¼ÈëPyMOL¿´¿´£º pymol ev?.pdb
°ÑpdfÎļþÖеÄÄ£ÐÍ·Ö¿ª£¬É¾³ýÔʼ½á¹¹¡£ split_states ev1 split_states ev2 delete ev1 or ev2
¸øÄ£ÐÍÉÏÉ«¡£ÌØÕ÷Öµ1Öеļ«¶Ë½á¹¹ÏÔʾΪÀ¶-ÂÌÉ«¶øÌØÕ÷Öµ¶þΪ»Æ-ºìÉ«¡£ spectrum count dss
hide everything show cartoon
ÓÃPyMOLsµÄ'align'ÃüÁÄÜ»³ö±íʾÁ½ÖÖ¹¹Ïó²îÒìµÄСÌõ¡£ align ev1_0001 and c,n,ca),object=diff1 align ev2_0001 and c,n,ca),object=diff2
(n.
c,n,ca),ev1_0002
and
(n. (n. c,n,ca),ev2_0002 and (n. ==Q== What is the largest difference between the extreme structures for eigenvector 1? And for eigenvector 2?
ΪÁËÀí½âÌØÕ÷ÖµµÄÒâÒ壬ÏëÏóÒ»ÏÂÅ·ÖÞ³ÇÊмäÂô»õÈ˵ÄÒÆ¶¯Ëù·¢ÉúµÄÊÂÇé¡£ÕâÖÖÒÆ¶¯¿ÉÓõØÇò×ø±êÌåϵ½âÊÍ£¬ÕâÖÖÇé¿öÏÂÎÒÃÇÐèÒª¶Ôÿ¸öλÖòÉÓÃÈý¸ö×ø±ê¡£ËäÈ»ÕâÊǶԵ쬵«Èç¹ûÄãÖ»Ïë½âÊÍÂô»õÈ˵ÄÒÆ¶¯£¬¾Í²»ÊÇ×î¼ÑµÄ¡£ÒòΪÀíÂÛÉÏ£¬ÈκÎ×ø±êÌåϵ¶¼Ò»ÑùºÃ£¬ÎÒÃÇ¿ÉÒÔ¶¨ÒåÒ»¸öеģ¨×ø±êÌåϵ£©À´½âÊÍÂô»õÈ˵ÄÒÆ¶¯¡£Êµ¼ÊÉÏ£¬ÒòΪµØÇò±íÃæ¿ÉÒÔÓöþά¿Õ¼ä´ú±í£¬ÎÒÃÇÖ»ÐèÒªÁ½¸ö×ø±ê¶øÎÞÐëÈý¸ö¡£ Ö±¹Û¿´À´£¬ÓÐÈË»áÄÃÄϱ±¼«ºÍ¶«Î÷Öá˵Ê£¬µ«Ò²¿ÉÒÔ´ÓÒÆ¶¯ÖÐÍÆ¶Ï³öÖá¡£±È·½ËµÂô»õÈËÔÚÂ×¶Ø-ÑŵäÖáÉÏ×ßµÄ×î¶à¡£Õâ¸öÖá×÷ΪµÚÒ»¸öÌØÕ÷Öµ£»µÚ¶þ¸öÌØÕ÷ÖµÓëµÚÒ»¸öÕý½»¡£ÓÃÕâÖÖ·½Ê½£¬Âô»õÈËÔÚÅ·ÖÞµÄÿ¸öλÖþͿÉÒÔÓÃÔÚÕâÁ½¸öÌØÕ÷ÖµÉϵÄͶӰΨһµØÈ·¶¨ÏÂÀ´¡£¶ÔËüÃǵÄͶӰ×÷ͼ£¬¾Í¿ÉÒÔÏÔʾ³öÂÃÐзÏß¡£ÑØ×ŵÚÒ»¸ö×ø±êµÄ¼«¶ËͶӰ¶ÔÓ¦ÓÚReykjavikºÍĪ˹¿Æ£¬¼´Ê¹ËüÃÇʵ¼ÊÉϲ»ÔÚÕâ¸öÖáÉÏ¡£
µ°°×Öʹ¹ÏóÒ²ºÍÉÏÃæËùÊöµÄһģһÑù¡£Äã¿´µ½µÄ¼«¶ËͶӰ²¢²»Ò»¶¨¶ÔÓ¦ÓÚÎïÀí½á¹¹£¬µ«ÊÇËüÃÇÔÊÐí¿´µ½ÑØÖáµÄÔ˶¯ºÍ×ܵÄÔ˶¯³Ì¶È¡£ÎªÁ˽⵰°×ÖÊÑØ¹¹Ïó¿Õ¼äµÄÒÆ¶¯£¬ÎÒÃÇ¿ÉÒÔ»³öÌØÕ÷Öµ2¶ÔÌØÕ÷Öµ1µÄͶӰͼ¡£Îª´Ë£¬´ÓÁ½¸ö.xvgÎļþÖÐÌáȡͶӰÊý¾Ý²¢ÇҺϲ¢µ½Îļþev1-vs-ev2.datÖС£×¢Òâ'>'±íʾÊä³öÓÉÆÁĻ֨¶¨Ïòµ½Ò»¸öÎļþÖУ¬ËùÒÔÄã¿´²»µ½ÈÎºÎÆÁÄ»Êä³ö¡£
grep -v \proj-ev1.xvg | awk '{print $2}' > proj-ev11.dat
grep -v \proj-ev2.xvg | awk '{print $2}' > proj-ev12.dat
paste proj-ev11.dat proj-ev12.dat > ev1-vs-ev2.dat ΪÁ˽âÊÍÄ£Äâ¹ý³Ì£¬ÎÒÃÇÒ²ÌáÈ¡ÁË×îºó7.5 ns£¨×îºó1500µã£©ºÍ5.0 ns£¨×îºó1000µã£©µÄͶӰ¡£È»ºó°ÑËüÃǵ¼Èëxmgrace¡£
tail -1500 ev1-vs-ev2.dat > last-7.5ns.dat tail -1000 ev1-vs-ev2.dat > last-5.0ns.dat
xmgrace ev1-vs-ev2.dat last-7.5ns.dat last-5.0ns.dat ==Q== What is the shape of the projections? Are these mutually independent (oval distribution)?
==Q== Would the same eigenvectors (axes) be obtained if the analysis were performed on the last 7.5 ns? And on the last 5.0 ns?
½áÓï
Write a concluding paragraph, comparing the results obtained for the different proteins. Also reflect on the overall stability and the probability that the structure deposited in the PDB properly reflects the solution structure. In other words, does the structure stay close to the starting structure or does it drift away and how much? Can you suggest a mechanism that would explain the differences in UbcH6 and UbcH8 interaction profiles and why a single conserved mutation can restore the rich interaction profile of UbcH6 when starting from UbcH8? What are the limits of the simulations to explain such a complex biological process?