9.7 Ô²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
ÍÚÃüÌâ ¡¾¿¼Çé̽¾¿¡¿
5Ä꿼Çé ¿¼µã ÄÚÈݽâ¶Á ¿¼ÌâʾÀý ¿¼Ïò ¹ØÁª¿¼µã Ô¤²âÈÈ¶È 1.¶¨ÖµÓë ÕÆÎÕÓëÔ²×¶ÇúÏßÓйص͍¶¨µãÎÊÌâ ÖµÓ붨µãÎÊÌâ 2.×îÖµÓë ÕÆÎÕÓëÔ²×¶ÇúÏßÓйصIJη¶Î§ÎÊÌâ Êý·¶Î§ÎÊÌâ 3.´æÔÚÐÔÁË½â²¢ÕÆÎÕÓëÔ²×¶ÇúÏßÓÐÎÊÌ⠹صĴæÔÚÐÔÎÊÌâ 2018¿Î±ê¢ñ,19,12·Ö 2017¿Î±ê¢ñ,20,12·Ö 2016¿Î±ê¢ò,20,12·Ö 2015¿Î±ê¢ò,20,12·Ö ¶¨ÖµÎÊÌâ ¶¨µãÎÊÌâ ·¶Î§ÎÊÌâ ´æÔÚÐÔÎÊÌâ ½ÇÆ½·ÖÏßµÄ ÐÔÖÊ,бÂʹ«Ê½ ¸ùÓëϵÊýµÄ ¹ØÏµ¡¢Ð±Âʹ«Ê½ ÍÖÔ²µÄ¼¸ºÎÐÔÖÊ ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ бÂʹ«Ê½ ¡ï¡ï¡ï ¡ï¡ï¡î ¡ï¡ï¡ï ·ÖÎö½â¶Á 1.»á´¦Àí¶¯ÇúÏß(º¬Ö±Ïß)¹ý¶¨µãµÄÎÊÌâ.2.»áÖ¤Ã÷ÓëÇúÏßÉϵ͝µãÓйصֵ͍ÎÊÌâ.3.»á°´Ìõ¼þ½¨Á¢Ä¿±êº¯Êý,Ñо¿±äÁ¿µÄ×îÖµÎÊÌâ¼°±äÁ¿µÄȡֵ·¶Î§ÎÊÌâ,×¢ÒâÔËÓá°ÊýÐνáºÏ¡±¡°¼¸ºÎ·¨¡±ÇóijЩÁ¿µÄ×îÖµ.4.ÄÜÓëÆäËû֪ʶ½»»ã,´Ó¼ÙÉè½áÂÛ³ÉÁ¢ÈëÊÖ,ͨ¹ýÍÆÀíÂÛÖ¤½â´ð´æÔÚÐÔÎÊÌâ.5.±¾½ÚÔڸ߿¼ÖÐÎ§ÈÆÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµ,Õ¹¿ª¶Ô¶¨Öµ¡¢×îÖµ¡¢²ÎÊýȡֵ·¶Î§µÈÎÊÌâµÄ¿¼²é,×¢ÖØ¶ÔÊýѧ˼Ïë·½·¨µÄ¿¼²é,·ÖֵԼΪ12·Ö,ÄÑ¶ÈÆ«´ó.
ÆÆ¿¼µã ¡¾¿¼µã¼¯Ñµ¡¿
¿¼µãÒ» ¶¨ÖµÓ붨µãÎÊÌâ
1.(2018ÖØÇìôë½Ä£Äâ,9)ÒÑÖªÔ²C:x+y=1,µãPΪֱÏßx+2y-4=0ÉÏÒ»¶¯µã,¹ýµãPÏòÔ²CÒýÁ½ÌõÇÐÏßPA,PB,A,BΪÇеã,ÔòÖ±ÏßAB¾¹ý¶¨µã( ) A. B. C. D. ´ð°¸ B
2.(2018ºÓ±±ÎåУ12ÔÂÁª¿¼,20)ÒÑÖªÍÖÔ²C: + =1(a>b>0)µÄÀëÐÄÂÊΪ ,ÓÒ½¹µãΪF,É϶¥µãΪA,
2
2
ÇÒ¡÷AOFµÄÃæ»ýΪ (OÊÇ×ø±êÔµã). (1)ÇóÍÖÔ²CµÄ·½³Ì;
(2)ÉèPÊÇÍÖÔ²CÉϵÄÒ»µã,¹ýPµÄÖ±ÏßlÓëÒÔÍÖÔ²µÄ¶ÌÖáΪֱ¾¶µÄÔ²ÇÐÓÚµÚÒ»ÏóÏÞ,ÇеãΪM,Ö¤Ã÷:|PF|+|PM|Ϊ¶¨Öµ.
½âÎö (1)ÉèÍÖÔ²µÄ°ë½¹¾àΪc,
ÓÉÒÑÖªµÃ ?
¡àÍÖÔ²µÄ·½³ÌΪ+y=1.
2
(2)Ö¤Ã÷:ÒÔ¶ÌÖáΪֱ¾¶µÄÔ²µÄ·½³ÌΪx+y=1,F(1,0),
ÉèP(x0,y0),Ôò + =1(0 ¡à|PF|= - = - - 22 = - = - =(2-x0). ÓÖlÓëÔ²x+y=1ÏàÇÐÓÚM, ¡à|PM|= - = - = -==x0, 22 ¡à|PF|+|PM|=(2-x0)+x0= ,Ϊ¶¨Öµ. ¿¼µã¶þ ×îÖµÓ뷶ΧÎÊÌâ 1.(2018ºÓ±±°ÙУÁªÃË4ÔÂÁª¿¼,16)ÒÑÖªÅ×ÎïÏßC:x=8yµÄ½¹µãΪF,×¼ÏßΪl1,Ö±Ïßl2ÓëÅ×ÎïÏßCÏàÇÐÓÚµãP,¼ÇµãPµ½Ö±Ïßl1µÄ¾àÀëΪd1,µãFµ½Ö±Ïßl2µÄ¾àÀëΪd2,Ôò ´ð°¸ 2.(2018°²»Õ½ÄÏʮУ4ÔÂÁª¿¼,20)ÒÑÖªÀëÐÄÂÊΪ µÄÍÖÔ²CµÄ½¹µãÔÚyÖáÉÏ,ÇÒÒÔÍÖÔ²µÄ4¸ö¶¥µãΪ¶¥µãµÄËıßÐεÄÃæ»ýΪ4,¹ýµãM(0,3)µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B. (1)ÇóÍÖÔ²CµÄ·½³Ì; (OÎª×ø±êÔµã).Çóµ±|AB|< ʱ,ʵÊý¦ËµÄȡֵ·¶Î§. (2)ÉèPΪÍÖÔ²ÉÏÒ»µã,ÇÒ + =¦Ë ½âÎö (1)ÉèÍÖÔ²µÄ·½³ÌΪ + =1(a>b>0),ÓÉÌâÒâ¿ÉÖªe= = ,µÃ = ,a=2b.ÓÖÓÉÌâÒâÖª2ab=4,ËùÒÔ 22 µÄ×î´óֵΪ . a=2,b=1,¹ÊÍÖÔ²·½³ÌΪx+ =1. (2)ÉèA(x1,y1),B(x2,y2),P(x3,y3). µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ,Ö±ÏßABµÄ·½³ÌΪx=0,´Ëʱ|AB|=4> ,ÓëÌâÒâ²»·û. 2 22µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ,ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+3,ÓÉ ÏûÈ¥yµÃ(4+k)x+6kx+5=0, ËùÒÔ¦¤=(6k)-20(4+k), Óɦ¤>0,µÃk>5, Ôòx1+x2= - 2 22 ,x1¡¤x2= , y1+y2=(kx1+3)+(kx2+3)= , ÒòΪ|AB|= - - < , ËùÒÔ - ¡¤ 2 - < , 2 ½âµÃ- ¼´(x1,y1)+(x2,y2)=¦Ë(x3,y3), + =0, ËùÒÔµ±¦Ë=0ʱ,ÓÉ µÃx1+x2= =0,y1+y2= =0, ½âµÃk¡Ê?, ËùÒÔ´Ëʱ·ûºÏÌõ¼þµÄÖ±Ïßl²»´æÔÚ; µ±¦Ë¡Ù0ʱ,x3= - = ,y3= - = , ÒòΪµãP(x3,y3)ÔÚÍÖÔ²ÉÏ, ËùÒÔ + =1, »¯¼òµÃ¦Ë= 22 - ,ÒòΪ5 2 ËùÒÔ3<¦Ë<4,Ôò¦Ë¡Ê(-2,- )¡È( ,2). ×ÛÉÏ,ʵÊý¦ËµÄȡֵ·¶Î§Îª(-2,- )¡È( ,2). ¿¼µãÈý ´æÔÚÐÔÎÊÌâ 1.(2017¸£½¨¸£ÖÝÄ£Äâ,20)ÒÑÖªµãPÊÇÖ±Ïßl:y=x+2ÓëÍÖÔ² +y=1(a>1)µÄÒ»¸ö¹«¹²µã,F1,F2·Ö±ðΪ¸ÃÍÖÔ²µÄ×ó,ÓÒ½¹µã,Éè|PF1|+|PF2|È¡µÃ×îСֵʱÍÖԲΪC. (1)ÇóÍÖÔ²CµÄ±ê×¼·½³Ì¼°ÀëÐÄÂÊ; (2)ÒÑÖªA,BΪÍÖÔ²CÉϹØÓÚyÖá¶Ô³ÆµÄÁ½µã,QÊÇÍÖÔ²CÉÏÒìÓÚA,BµÄÈÎÒâÒ»µã,Ö±ÏßQA,QB·Ö±ðÓëyÖá½»ÓÚµãM(0,m),N(0,n),ÊÔÅжÏmnÊDz»ÊǶ¨Öµ,Èç¹ûÊǶ¨Öµ,Çó³ö¸Ã¶¨Öµ;Èç¹û²»ÊÇ,Çë˵Ã÷ÀíÓÉ. µÃ(a2+1)x2+4a2x+3a2=0. ½âÎö (1)ÁªÁ¢ ¡ßÖ±Ïßy=x+2ÓëÍÖÔ²Óй«¹²µã, 2 ¡à¦¤=16a-4(a+1)¡Á3a¡Ý0,µÃa¡Ý3,ÓÖa>1,¡àa¡Ý , ÓÉÍÖÔ²µÄ¶¨ÒåÖª|PF1|+|PF2|=2a, ¹Êµ±a= ʱ,|PF1|+|PF2|È¡µÃ×îСֵ, ´ËʱÍÖÔ²CµÄ±ê×¼·½³ÌΪ +y=1,ÀëÐÄÂÊΪ = . (2)mnΪ¶¨Öµ.ÉèA(x1,y1),B(-x1,y1),Q(x0,y0)(y0¡Ùy1),ÇÒÒÑÖªM(0,m),N(0,n), ÓÉÌâÒâÖªkQA=kQM,¡à - = 4222 2 - - , ¼´m=y0-¡àmn= - - - = - ,ͬÀí,µÃn= , , - - - ¡¤ = - ÓÖ + =1, + =1,¡à =1- , =1- , - - - - ¡àmn== =1, - - ¡àmnΪ¶¨Öµ1. 2.(2017ºþÄÏÏæÖÐÃûУÁª¿¼,20)Èçͼ,ÇúÏßCÓÉÉϰëÍÖÔ²C1: + =1(a>b>0,y¡Ý0)ºÍ²¿·ÖÅ×ÎïÏßC2:y=-x+1(y¡Ü0)Á¬½Ó¶ø³É,C1ÓëC2µÄ¹«¹²µãΪA,B,ÆäÖÐC1µÄÀëÐÄÂÊΪ . (1)Çóa,bµÄÖµ; (2)¹ýµãBµÄÖ±ÏßlÓëC1,C2·Ö±ð½»ÓÚµãP,Q(¾ùÒìÓÚµãA,B),ÊÇ·ñ´æÔÚÖ±Ïßl,ʹµÃÒÔPQΪֱ¾¶µÄԲǡºÃ¹ýµãA?Èô´æÔÚ,Çó³öÖ±ÏßlµÄ·½³Ì;Èô²»´æÔÚ,Çë˵Ã÷ÀíÓÉ. 2 ½âÎö (1)ÔÚC1,C2µÄ·½³ÌÖÐ,Áîy=0,¿ÉµÃb=1, ÇÒA(-1,0),B(1,0)ÊÇÉϰëÍÖÔ²C1µÄ×ó¡¢ÓÒ¶¥µã. ÓÉe= = ¼°a-c=b=1¿ÉµÃa=2,¡àa=2,b=1. (2)´æÔÚ.ÓÉ(1)Öª,ÉϰëÍÖÔ²C1µÄ·½³ÌΪ +x=1(y¡Ý0). ÓÉÌâÒ×Öª,Ö±ÏßlÓëxÖá²»ÖØºÏÒ²²»´¹Ö±, ÉèÆä·½³ÌΪy=k(x-1)(k¡Ù0). ´úÈëC1µÄ·½³Ì,ÕûÀíµÃ(k+4)x-2kx+k-4=0.(*) ÉèµãPµÄ×ø±êΪ(xP,yP), ¡ßÖ±Ïßl¹ýµãB,¡àx=1ÊÇ·½³Ì(*)µÄÒ»¸ö¸ù. 2 2 2 2 222 2