Êý¾Ý½á¹¹ÊÔÌâ¿â¼°´ð°¸
µÚÒ»Õ ¸ÅÂÛ
Ò»¡¢Ñ¡ÔñÌâ
1¡¢Ñо¿Êý¾Ý½á¹¹¾ÍÊÇÑо¿£¨ D£©¡£
A.Êý¾ÝµÄÂß¼½á¹¹ B.Êý¾ÝµÄ´æ´¢½á¹¹
C.Êý¾ÝµÄÂß¼½á¹¹ºÍ´æ´¢½á¹¹ D.Êý¾ÝµÄÂß¼½á¹¹¡¢´æ´¢½á¹¹¼°Æä»ù±¾²Ù×÷ 2¡¢Ëã·¨·ÖÎöµÄÁ½¸öÖ÷Òª·½ÃæÊÇ£¨A£©¡£
A. ¿Õ¼ä¸´ÔӶȺÍʱ¼ä¸´ÔÓ¶È B. ÕýÈ·ÐԺͼòµ¥ÐÔ C. ¿É¶ÁÐÔºÍÎĵµÐÔD. Êý¾Ý¸´ÔÓÐԺͳÌÐò¸´ÔÓÐÔ 3¡¢¾ßÓÐÏßÐԽṹµÄÊý¾Ý½á¹¹ÊÇ£¨D£©¡£
A.ͼ B.Ê÷ C.¹ãÒå±í D.Õ» 6¡¢Ëã·¨ÊÇ£¨ D£©¡£
A.¼ÆËã»ú³ÌÐò B.½â¾öÎÊÌâµÄ¼ÆËã·½·¨ C.ÅÅÐòËã·¨ D.½â¾öÎÊÌâµÄÓÐÏÞÔËËãÐòÁÐ
7¡¢Ä³Ëã·¨µÄÓï¾äÖ´ÐÐÆµ¶ÈΪ£¨3n+nlog2n+n2+8£©,Æäʱ¼ä¸´ÔӶȱíʾ£¨ C £©¡£
A. O(n) B. O(nlog2n) C. O(n2) D. O(log2n) 11¡¢³éÏóÊý¾ÝÀàÐ͵ÄÈý¸ö×é³É²¿·Ö·Ö±ðΪ£¨A £©¡£
A. Êý¾Ý¶ÔÏó¡¢Êý¾Ý¹ØÏµºÍ»ù±¾²Ù×÷ B.Êý¾ÝÔªËØ¡¢Âß¼½á¹¹ºÍ´æ´¢½á¹¹ C. Êý¾ÝÏî¡¢Êý¾ÝÔªËØºÍÊý¾ÝÀàÐÍ D. Êý¾ÝÔªËØ¡¢Êý¾Ý½á¹¹ºÍÊý¾ÝÀàÐÍ ¶þ¡¢Ìî¿ÕÌâ Èý¡¢×ÛºÏÌâ
1¡¢½«ÊýÁ¿¼¶O(1),O(N),O(N2),O(N3),O(NLOG2N),O(LOG2N),O(2N)°´Ôö³¤ÂÊÓÉСµ½´óÅÅÐò¡£
´ð°¸£º O(1) O(log2N) O(N) O(Nlog2N) O(N2) O(N3) O(2N)
Ò»¡¢Ìî¿ÕÌâ
1. Êý¾Ý½á¹¹±»ÐÎʽµØ¶¨ÒåΪ£¨D, R£©£¬ÆäÖÐDÊÇÊý¾ÝÔªËØµÄÓÐÏÞ¼¯ºÏ£¬RÊÇDÉϵĹØÏµÓÐÏÞ¼¯ºÏ¡£
2. Êý¾Ý½á¹¹°üÀ¨Êý¾ÝµÄÂß¼½á¹¹¡¢Êý¾ÝµÄ´æ´¢½á¹¹ºÍÊý¾ÝµÄÔËËãÕâÈý¸ö·½ÃæµÄÄÚÈÝ¡£
3. Êý¾Ý½á¹¹°´Âß¼½á¹¹¿É·ÖΪÁ½´óÀ࣬ËüÃÇ·Ö±ðÊÇÏßÐԽṹºÍ·ÇÏßÐԽṹ¡£
8£®Êý¾ÝµÄ´æ´¢½á¹¹¿ÉÓÃËÄÖÖ»ù±¾µÄ´æ´¢·½·¨±íʾ£¬ËüÃÇ·Ö±ðÊÇ˳Ðò¡¢Á´Ê½¡¢Ë÷Òý¡¢É¢ÁС£
9. Êý¾ÝµÄÔËËã×î³£ÓõÄÓÐ5ÖÖ£¬ËüÃÇ·Ö±ðÊDzåÈ롢ɾ³ý¡¢Ð޸ġ¢²éÕÒ¡¢ÅÅÐò¡£
¶þ¡¢µ¥ÏîÑ¡ÔñÌâ
£¨C£©2. Êý¾Ý½á¹¹ÖУ¬ÓëËùʹÓõļÆËã»úÎ޹صÄÊÇÊý¾ÝµÄ½á¹¹£»
A)´æ´¢ B)ÎïÀí C)Âß¼ D)ÎïÀíºÍ´æ´¢
Èý¡¢¼ò´ðÌâ
1.Êý¾Ý½á¹¹ºÍÊý¾ÝÀàÐÍÁ½¸ö¸ÅÄîÖ®¼äÓÐÇø±ðÂð£¿
´ð£º¼òµ¥µØËµ£¬Êý¾Ý½á¹¹¶¨ÒåÁËÒ»×鰴ijЩ¹ØÏµ½áºÏÔÚÒ»ÆðµÄÊý×éÔªËØ¡£Êý¾ÝÀàÐͲ»½ö¶¨ÒåÁËÒ»×é´ø½á¹¹µÄÊý¾ÝÔªËØ£¬¶øÇÒ»¹ÔÚÆäÉ϶¨ÒåÁËÒ»×é²Ù×÷¡£
2. ¼òÊöÏßÐԽṹÓë·ÇÏßÐԽṹµÄ²»Í¬µã¡£
´ð£ºÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼¹ØÏµÊÇÒ»¶ÔÒ»µÄ£¬·ÇÏßÐԽṹ·´Ó³½áµã¼äµÄÂß¼¹ØÏµÊǶà¶Ô¶àµÄ¡£
ËÄ¡¢·ÖÎöÏÂÃæ¸÷³ÌÐò¶ÎµÄʱ¼ä¸´ÔÓ¶È
1. for (i=0; i 3. x=0; for(i=1; i for (j=1; j<=n-i; j++) x++; Mn nn nn log3n 2. s=0; for (i=0; i for(j=0; j 4. i=1; while(i<=n) i=i*3; Îå¡¢ÉèÓÐÊý¾ÝÂß¼½á¹¹S=£¨D,R£©£¬ÊÔ°´¸÷СÌâËù¸øÌõ¼þ»³öÕâЩÂß¼½á¹¹µÄͼʾ£¬²¢È·¶¨ÆäÊÇÄÄÖÖÂß¼½á¹¹¡£ 1. D={d1,d2,d3,d4} R={(d1,d2),(d2,d3),(d3,d4) } 2£® D={d1,d2,?,d9} R={(d1,d2),(d1,d3),(d3,d4),(d3,d6),(d6,d8),(d4,d5), (d6,d7),(d8,d9) } 3£®D={d1,d2,?,d9} R={(d1,d3),(d1,d8),(d2,d3),(d2,d4),(d2,d5),(d3,d9), (d5,d6),(d8,d9),(d9,d7), (d4,d7),(d4,d6)} µÚ¶þÕ ÏßÐÔ±í Ò»¡¢Ñ¡ÔñÌâ 1¡¢Èô³¤¶ÈΪnµÄÏßÐÔ±í²ÉÓÃ˳Ðò´æ´¢½á¹¹£¬ÔÚÆäµÚi¸öλÖòåÈëÒ»¸öÐÂÔªËØËã·¨µÄʱ¼ä¸´ÔÓ¶È£¨£©¡£ A. O(log2n) B.O(1) C. O(n) D.O(n2) 2¡¢ÈôÒ»¸öÏßÐÔ±íÖÐ×î³£ÓõIJÙ×÷ÊÇÈ¡µÚi¸öÔªËØºÍÕÒµÚi¸öÔªËØµÄǰÇ÷ÔªËØ£¬Ôò²ÉÓ㨣©´æ´¢·½Ê½×î½Úʡʱ¼ä¡£ A. ˳Ðò±í B. µ¥Á´±í C. Ë«Á´±í D. µ¥Ñ»·Á´±í 7¡¢ÔÚË«ÏòÑ»·Á´±íÖУ¬ÔÚpÖ¸ÕëËùÖ¸µÄ½áµãºó²åÈëÒ»¸öÖ¸ÕëqËùÖ¸ÏòµÄнáµã£¬ÐÞ¸ÄÖ¸ÕëµÄ²Ù×÷ÊÇ£¨c£©¡£ A. p->next=q;q->prior=p;p->next->prior=q;q->next=q; B. p->next=q;p->next->prior=q;q->prior=p;q->next=p->next; C. q->prior=p;q->next=p->next;p->next->prior=q;p->next=q; D. q->next=p->next;q->prior=p;p->next=q;p->next=q; 10¡¢ÏßÐÔ±íÊÇn¸ö£¨£©µÄÓÐÏÞÐòÁС£ A. ±íÔªËØ B. ×Ö·û C. Êý¾ÝÔªËØ D. Êý¾ÝÏî 11¡¢´Ó±íÖÐÈÎÒ»½áµã³ö·¢£¬¶¼ÄÜɨÃèÕû¸ö±íµÄÊÇ£¨£©¡£ A. µ¥Á´±í B.˳Ðò±í C. Ñ»·Á´±í D.¾²Ì¬Á´±í 12¡¢ÔÚ¾ßÓÐn¸ö½áµãµÄµ¥Á´±íÉϲéÕÒֵΪxµÄÔªËØÊ±£¬Æäʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A. O(n) B. O(1) C. O(n2) D. O(n-1) 15¡¢ÔÚÏßÐÔ±íµÄÏÂÁд洢½á¹¹ÖУ¬¶ÁÈ¡ÔªËØ»¨·ÑµÄʱ¼ä×îÉÙµÄÊÇ£¨£©¡£ A. µ¥Á´±í B. Ë«Á´±í C. Ñ»·Á´±í D. ˳Ðò±í 16¡¢ÔÚÒ»¸öµ¥Á´±íÖУ¬Èôɾ³ýpËùÖ¸Ïò½áµãµÄºóÐø½áµã£¬ÔòÖ´ÐУ¨£©¡£ A. p->next=p->next->next; B. p=p->next;p->next=p->next->next; C. p =p->next; D. p=p->next->next; 17¡¢½«³¤¶ÈΪnµÄµ¥Á´±íÁ¬½ÓÔÚ³¤¶ÈΪmµÄµ¥Á´±íÖ®ºóµÄËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪ£¨£©¡£ A. O(1) B. O(n) C. O(m) D. O(m+n) 18¡¢ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ÊÇÒ»ÖÖ£¨a£©´æ´¢½á¹¹¡£N A. Ëæ»ú´æÈ¡ B. ˳Ðò´æÈ¡ C. Ë÷Òý´æÈ¡ D. É¢ÁдæÈ¡ 19¡¢Ë³Ðò±íÖУ¬²åÈëÒ»¸öÔªËØËùÐèÒÆ¶¯µÄÔªËØÆ½¾ùÊýÊÇ£¨£©¡£ A. (n-1)/2 B. n C. n+1 D. (n+1)/2 11¡¢²»´øÍ·½áµãµÄµ¥Á´±íheadΪ¿ÕµÄÅж¨Ìõ¼þÊÇ£¨ b£©¡£ A. head==NULL B. head->next==NULL C. head->next==head D. head!=NULL 12¡¢ÔÚÏÂÁжÔ˳Ðò±í½øÐеIJÙ×÷ÖУ¬Ë㷨ʱ¼ä¸´ÔÓ¶ÈΪO(1)µÄÊÇ£¨£©¡£ A. ·ÃÎʵÚi¸öÔªËØµÄǰÇý£¨1 C.ɾ³ýµÚi¸öÔªËØ(1?i?n) D. ¶Ô˳Ðò±íÖÐÔªËØ½øÐÐÅÅÐò 13¡¢ÒÑÖªÖ¸ÕëpºÍq·Ö±ðÖ¸Ïòijµ¥Á´±íÖеÚÒ»¸ö½áµãºÍ×îºóÒ»¸ö½áµã¡£¼ÙÉèÖ¸ÕësÖ¸ÏòÁíÒ»¸öµ¥Á´±íÖÐij¸ö½áµã£¬ÔòÔÚsËùÖ¸½áµãÖ®ºó²åÈëÉÏÊöÁ´±íÓ¦Ö´ÐеÄÓï¾äΪ£¨ a £©¡£ A. q->next=s->next£»s->next=p£» B. s->next=p£»q->next=s->next£» C. p->next=s->next£»s->next=q£» D. s->next=q£»p->next=s->next£» 15¡¢ÔÚ±í³¤ÎªnµÄ˳Ðò±íÖУ¬µ±ÔÚÈκÎλÖÃɾ³ýÒ»¸öÔªËØµÄ¸ÅÂÊÏàͬʱ£¬É¾³ýÒ»¸öÔªËØËùÐèÒÆ¶¯µÄƽ¾ù¸öÊýΪ£¨a£©¡£ A. (n-1)/2 B. n/2 C. (n+1)/2 D. n ¶þ¡¢Ìî¿ÕÌâ 1¡¢Éèµ¥Á´±íµÄ½áµã½á¹¹Îª£¨data,next£©¡£ÒÑÖªÖ¸ÕëpÖ¸Ïòµ¥Á´±íÖеĽáµã£¬qÖ¸Ïòнáµã£¬Óû½«q²åÈëµ½p½áµãÖ®ºó£¬ÔòÐèÒªÖ´ÐеÄÓï¾ä£º£»¡£ ´ð°¸£ºq->next=p->next p->next=q 3¡¢Ð´³ö´øÍ·½áµãµÄË«ÏòÑ»·Á´±íLΪ¿Õ±íµÄÌõ¼þ¡£ ´ð°¸£ºL->prior==L->next==L 5¡¢ÔÚÒ»¸öµ¥Á´±íÖÐɾ³ýpËùÖ¸½áµãµÄºó¼Ì½áµãʱ£¬Ó¦Ö´ÐÐÒÔϲÙ×÷£º q= p->next; p->next=_ q->next ___; Èý¡¢ÅжÏÌâ 3¡¢ÓÃÑ»·µ¥Á´±í±íʾµÄÁ´¶ÓÁÐÖУ¬¿ÉÒÔ²»Éè¶ÓÍ·Ö¸Õ룬½öÔÚ¶ÓβÉèÖöÓβָÕë¡£ x 4¡¢Ë³Ðò´æ´¢·½Ê½Ö»ÄÜÓÃÓÚ´æ´¢ÏßÐԽṹ¡£? 5¡¢ÔÚÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ÖУ¬Âß¼ÉÏÏàÁÚµÄÁ½¸öÔªËØµ«ÊÇÔÚÎïÀíλÖÃÉϲ»Ò»¶¨ÊÇÏàÁڵġ£? 6¡¢Á´Ê½´æ´¢µÄÏßÐÔ±í¿ÉÒÔËæ»ú´æÈ¡¡£? ËÄ¡¢³ÌÐò·ÖÎöÌî¿ÕÌâ 1¡¢º¯ÊýGetElemʵÏÖ·µ»Øµ¥Á´±íµÄµÚi¸öÔªËØ£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ int GetElem(LinkList L,int i,Elemtype *e){ LinkList p£»int j£» p=L->next;j=1; while(p&&j p=p->next;++j; } if(!p||j>i) return ERROR; *e=p->data; return OK; } 2¡¢º¯ÊýʵÏÖµ¥Á´±íµÄ²åÈëËã·¨£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ int ListInsert(LinkList L,int i,ElemType e){ LNode *p,*s;int j; p=L;j=0; while((p!=NULL)&&(j if(p==NULL||j>i-1) return ERROR; s=(LNode *)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; return OK; }/*ListInsert*/ 3¡¢º¯ÊýListDelete_sqʵÏÖ˳Ðò±íɾ³ýËã·¨£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ int ListDelete_sq(Sqlist *L,int i){ int k; if(i<1||i>L->length) return ERROR; for(k=i-1;k L->slist[k]=L->slist[k+1]; --L->Length; return OK; } 4¡¢º¯ÊýʵÏÖµ¥Á´±íµÄɾ³ýËã·¨£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ int ListDelete(LinkList L,int i,ElemType *s){ LNode *p,*q; int j; p=L;j=0; while((p->next!=NULL)&&(j if(p->next==NULL||j>i-1) return ERROR; q=p->next; p->next=q->next; *s=q->data; free(q); return OK; }/*listDelete*/ 5¡¢Ð´³öËã·¨µÄ¹¦ÄÜ¡£ int L(head){ node * head; int n=0; node *p; p=head; while(p!=NULL) { p=p->next; n++; } return(n); } ´ð°¸£ºÇóµ¥Á´±íheadµÄ³¤¶È Îå¡¢×ÛºÏÌâ 1¡¢±àдËã·¨£¬ÊµÏÖ´øÍ·½áµãµ¥Á´±íµÄÄæÖÃËã·¨¡£ ´ð°¸£ºvoid invent(Lnode *head) {Lnode *p,*q; if(!head->next) return ERROR; p=head->next; q=p->next; p->next =NULL; while(q) {p=q; q=q->next; p->next=head->next; head->next=p;} } 2¡¢ÓÐÁ½¸öÑ»·Á´±í£¬Á´Í·Ö¸Õë·Ö±ðΪL1ºÍL2£¬ÒªÇóд³öËã·¨½«L2Á´±íÁ´µ½L1Á´±íÖ®ºó£¬ÇÒÁ¬½ÓºóÈÔ±£³ÖÑ»·Á´±íÐÎʽ¡£ ´ð°¸£ºvoid merge(Lnode *L1, Lnode *L2) {Lnode *p,*q ; while(p->next!=L1) p=p->next; while(q->next!=L2) q=q->next; q->next=L1; p->next =L2; } 3¡¢ÉèÒ»¸ö´øÍ·½áµãµÄµ¥ÏòÁ´±íµÄÍ·Ö¸ÕëΪhead£¬Éè¼ÆËã·¨£¬½«Á´±íµÄ¼Ç¼£¬°´ÕÕdataÓòµÄÖµµÝÔöÅÅÐò¡£ ´ð°¸£ºvoid assending(Lnode *head) {Lnode *p,*q , *r, *s; p=head->next; q=p->next; p->next=NULL; while(q) {r=q; q=q->next; if(r->data<=p->data) {r->next=p; head->next=r; p=r; } else {while(!p && r->data>p->data) {s=p; p=p->next; } r->next=p; s->next=r;} p=head->next; } } 4¡¢±àдËã·¨,½«Ò»¸öÍ·Ö¸ÕëΪhead²»´øÍ·½áµãµÄµ¥Á´±í¸ÄÔìΪһ¸öµ¥ÏòÑ»·Á´±í£¬²¢·ÖÎöËã·¨µÄʱ¼ä¸´ÔÓ¶È¡£ ´ð°¸£º void linklist_c(Lnode *head) {Lnode *p; p=head; if(!p) return ERROR; while(p->next!=NULL) p=p->next; p->next=head; } Éèµ¥Á´±íµÄ³¤¶È£¨Êý¾Ý½áµãÊý£©ÎªN£¬Ôò¸ÃËã·¨µÄʱ¼äÖ÷Òª»¨·ÑÔÚ²éÕÒÁ´±í×îºóÒ»¸ö½áµãÉÏ£¨Ëã·¨ÖеÄwhileÑ»·£©£¬ËùÒÔ¸ÃËã·¨µÄʱ¼ä¸´ÔÓ¶ÈΪO£¨N£©¡£ 5¡¢ÒÑÖªheadΪ´øÍ·½áµãµÄµ¥Ñ»·Á´±íµÄÍ·Ö¸Õ룬Á´±íÖеÄÊý¾ÝÔªËØÒÀ´ÎΪ£¨a1£¬a2,a3,a4,?,an£©,AΪָÏò¿ÕµÄ˳Ðò±íµÄÖ¸Õë¡£ÔĶÁÒÔϳÌÐò¶Î£¬²¢»Ø´ðÎÊÌ⣺ £¨1£©Ð´³öÖ´ÐÐÏÂÁгÌÐò¶ÎºóµÄ˳Ðò±íAÖеÄÊý¾ÝÔªËØ£» £¨2£©¼òÒªÐðÊö¸Ã³ÌÐò¶ÎµÄ¹¦ÄÜ¡£ if(head->next!=head) { p=head->next; A->length=0; while(p->next!=head) { p=p->next; A->data[A->length ++]=p->data; if(p->next!=head)p=p->next; } } ´ð°¸£º (1) (a2, a4, ?, ) (2)½«Ñ»·µ¥Á´±íÖÐżÊý½áµãλÖõÄÔªËØÖµÐ´Èë˳Ðò±íA 6¡¢Éè˳Ðò±ívaÖеÄÊý¾ÝÔªÊýµÝÔöÓÐÐò¡£ÊÔдһËã·¨£¬½«x²åÈ뵽˳Ðò±íµÄÊʵ±Î»ÖÃÉÏ£¬ÒÔ±£³Ö¸Ã±íµÄÓÐÐòÐÔ¡£ ´ð°¸£º void Insert_sq(Sqlist va[], ElemType x) {int i, j, n; n=length(va[]); if(x>=va[i]) va[n]=x; else {i=0; while(x>va[i]) i++; for(j=n-1;j>=I;j--) va[j+1]=va[j]; va[i]=x; } n++; } 7¡¢¼ÙÉèÏßÐÔ±í²ÉÓÃ˳Ðò´æ´¢½á¹¹£¬±íÖÐÔªËØÖµÎªÕûÐÍ¡£ÔĶÁËã·¨f2£¬Éè˳Ðò±íL=(3,7,3,2,1,1,8,7,3),д³öÖ´ÐÐËã·¨f2ºóµÄÏßÐÔ±íLµÄÊý¾ÝÔªËØ£¬²¢ÃèÊö¸ÃËã·¨µÄ¹¦ÄÜ¡£ void f2(SeqList *L){ int i,j,k; k=0; for(i=0;i for(j=0;j if(k!=i)L->data[k]=L->data[i]; k++; } } L->length=k; } ´ð°¸£º (3,7,2,1,8) ɾ³ý˳Ðò±íÖÐÖØ¸´µÄÔªËØ 8¡¢ÒÑÖªÏßÐÔ±íÖеÄÔªËØÒÔÖµµÝÔöÓÐÐòÅÅÁУ¬²¢ÒÔµ¥Á´±í×÷´æ´¢½á¹¹¡£ÊÔдһËã·¨£¬É¾³ý±íÖÐËùÓдóÓÚxÇÒСÓÚyµÄÔªËØ£¨Èô±íÖдæÔÚÕâÑùµÄÔªËØ£©Í¬Ê±Êͷű»É¾³ý½áµã¿Õ¼ä¡£ ´ð°¸£º void Delete_list(Lnode *head, ElemType x, ElemType y) {Lnode *p, *q; if(!head) return ERROR; p=head; q=p; while(!p) {if(p->data>x) && (p->data if(p==head) {head=p->next; free(p); p=head; q=p; } else {q->next=p->next; free(p); p=q->next; } else {q=p; p=p->next; } } } 9¡¢ÔÚ´øÍ·½áµãµÄÑ»·Á´±íLÖУ¬½áµãµÄÊý¾ÝÔªËØÎªÕûÐÍ£¬ÇÒ°´ÖµµÝÔöÓÐÐò´æ·Å¡£¸ø¶¨Á½¸öÕûÊýaºÍb£¬ÇÒa µÚÈýÕ ջºÍ¶ÓÁÐ Ò»¡¢Ñ¡ÔñÌâ 2¡¢ÅжÏÒ»¸öÑ»·¶ÓÁÐQ£¨×î¶àn¸öÔªËØ£©ÎªÂúµÄÌõ¼þÊÇ£¨c £©¡£ A. Q->rear==Q->front C. Q->front==(Q->rear+1)%n B. Q->rear==Q->front+1 D. Q->front==(Q->rear-1)%n 3¡¢Éè¼ÆÒ»¸öÅбð±í´ïʽÖÐÀ¨ºÅÊÇ·ñÅä¶ÔµÄËã·¨£¬²ÉÓ㨣©Êý¾Ý½á¹¹×î¼Ñ¡£ A. ˳Ðò±í B. Á´±í C. ¶ÓÁÐ D. Õ» 4¡¢´øÍ·½áµãµÄµ¥Á´±íheadΪ¿ÕµÄÅж¨Ìõ¼þÊÇ£¨£©¡£ A. head==NULL B. head->next==NULL C. head->next!=NULL D. head!=NULL 5¡¢Ò»¸öÕ»µÄÊäÈëÐòÁÐΪ£º1,2,3,4£¬ÔòÕ»µÄ²»¿ÉÄÜÊä³öµÄÐòÁÐÊÇ£¨£©¡£ A. 1243 B. 2134 C. 1432 D. 4312 E. 3214 6¡¢ÈôÓÃÒ»¸ö´óСΪ6µÄÊý×éÀ´ÊµÏÖÑ»·¶ÓÁУ¬ÇÒµ±rearºÍfrontµÄÖµ·Ö±ðΪ0£¬3¡£µ±´Ó¶ÓÁÐÖÐɾ³ýÒ»¸öÔªËØ£¬ÔÙ¼ÓÈëÁ½¸öÔªËØºó£¬rearºÍfrontµÄÖµ·Ö±ðΪ£¨£©¡£ A. 1ºÍ5 B. 2ºÍ4 C. 4ºÍ2 D. 5ºÍ1 7¡¢¶ÓÁеIJåÈë²Ù×÷ÊÇÔÚ£¨£©¡£ A. ¶Óβ B.¶ÓÍ· C. ¶ÓÁÐÈÎÒâλÖà D. ¶ÓÍ·ÔªËØºó 8¡¢Ñ»·¶ÓÁеĶÓÍ·ºÍ¶ÓβָÕë·Ö±ðΪfrontºÍrear£¬ÔòÅжÏÑ»·¶ÓÁÐΪ¿ÕµÄÌõ¼þÊÇ£¨£©¡£ A. front==rear B. front==0 C. rear==0 D. front=rear+1 9¡¢Ò»¸ö˳ÐòÕ»S£¬ÆäÕ»¶¥Ö¸ÕëΪtop£¬Ôò½«ÔªËØeÈëÕ»µÄ²Ù×÷ÊÇ£¨£©¡£ A. *S->top=e;S->top++; B. S->top++;*S->top=e; C. *S->top=e D. S->top=e; 10¡¢±í´ïʽa*(b+c)-dµÄºó׺±í´ïʽÊÇ£¨£©¡£ A. abcd+- B. abc+*d- C. abc*+d- D. -+*abcd 11¡¢½«µÝ¹éË㷨ת»»³É¶ÔÓ¦µÄ·ÇµÝ¹éË㷨ʱ£¬Í¨³£ÐèҪʹÓ㨣©À´±£´æÖмä½á¹û¡£ A.¶ÓÁÐ B.Õ» C.Á´±í D.Ê÷ 12¡¢Õ»µÄ²åÈëºÍɾ³ý²Ù×÷ÔÚ£¨£©¡£ A. Õ»µ× B. Õ»¶¥ C. ÈÎÒâλÖà D. Ö¸¶¨Î»Öà 13¡¢Îå½Ú³µÏáÒÔ±àºÅ1£¬2£¬3£¬4£¬5˳Ðò½øÈëÌú·µ÷¶ÈÕ¾£¨Õ»£©£¬¿ÉÒԵõ½£¨£©µÄ±à×é¡£ A. 3£¬4£¬5£¬1£¬2 B. 2£¬4£¬1£¬3£¬5 C. 3£¬5£¬4£¬2£¬1 D. 1£¬3£¬5£¬2£¬4 14¡¢Åж¨Ò»¸ö˳ÐòÕ»S£¨Õ»¿Õ¼ä´óСΪn£©Îª¿ÕµÄÌõ¼þÊÇ£¨£©¡£ A. S->top==0 B. S->top!=0 C. S->top==n D. S->top!=n 15¡¢ÔÚÒ»¸öÁ´¶ÓÁÐÖУ¬frontºÍrear·Ö±ðΪͷָÕëºÍβָÕ룬Ôò²åÈëÒ»¸ö½áµãsµÄ²Ù×÷Ϊ£¨£©¡£ A. front=front->next B. s->next=rear;rear=s C. rear->next=s;rear=s; D. s->next=front;front=s; 16¡¢Ò»¸ö¶ÓÁеÄÈë¶ÓÐòÁÐÊÇ1£¬2£¬3£¬4£¬Ôò¶ÓÁеijö¶ÓÐòÁÐÊÇ£¨£©¡£ A. 1£¬2£¬3£¬4 B. 4£¬3£¬2£¬1 C. 1£¬4£¬3£¬2 D. 3£¬4£¬1£¬2 17¡¢ÒÀ´ÎÔÚ³õʼΪ¿ÕµÄ¶ÓÁÐÖвåÈëÔªËØa,b,c,dÒԺ󣬽ô½Ó×Å×öÁËÁ½´Îɾ³ý²Ù×÷£¬´ËʱµÄ¶ÓÍ·ÔªËØÊÇ£¨£©¡£ A. a B. b C. c D. d 18¡¢Õý³£Çé¿öÏ£¬É¾³ý·Ç¿ÕµÄ˳Ðò´æ´¢½á¹¹µÄ¶ÑÕ»µÄÕ»¶¥ÔªËØ£¬Õ»¶¥Ö¸ÕëtopµÄ±ä»¯ÊÇ£¨£©¡£ A. top²»±ä B. top=0 C. top=top+1 D. top=top-1 19¡¢ÅжÏÒ»¸öÑ»·¶ÓÁÐQ£¨¿Õ¼ä´óСΪM£©Îª¿ÕµÄÌõ¼þÊÇ£¨£©¡£ A. Q->front==Q->rear B. Q->rear-Q->front-1==M C. Q->front+1=Q->rear D. Q->rear+1=Q->front 20¡¢Éè¼ÆÒ»¸öÅбð±í´ïʽÖÐ×óÓÒÀ¨ºÅÊÇ·ñÅä¶Ô³öÏÖµÄËã·¨£¬²ÉÓ㨣©Êý¾Ý½á¹¹×î¼Ñ¡£ A.ÏßÐÔ±íµÄ˳Ðò´æ´¢½á¹¹ B. ¶ÓÁÐ C. Õ» D. ÏßÐÔ±íµÄÁ´Ê½´æ´¢½á¹¹ 21¡¢µ±ÓôóСΪNµÄÊý×é´æ´¢Ë³ÐòÑ»·¶ÓÁÐʱ£¬¸Ã¶ÓÁеÄ×î´ó³¤¶ÈΪ£¨£©¡£ A. N B. N+1 C. N-1 D. N-2 22¡¢¶ÓÁеÄɾ³ý²Ù×÷ÊÇÔÚ£¨£©¡£ A. ¶ÓÊ× B. ¶Óβ C. ¶Óǰ D. ¶Óºó 23¡¢ÈôÈÃÔªËØ1£¬2£¬3ÒÀ´Î½øÕ»£¬Ôò³öÕ»´ÎÐò²»¿ÉÄÜÊÇ£¨£©¡£ A. 3£¬2£¬1 B. 2£¬1£¬3 C. 3£¬1£¬2 D. 1£¬3£¬2 24¡¢Ñ»·¶ÓÁÐÓÃÊý×éA[0£¬m-1]´æ·ÅÆäÔªËØÖµ£¬ÒÑÖªÆäͷβָÕë·Ö±ðÊÇfrontºÍrear£¬Ôòµ±Ç°¶ÓÁÐÖеÄÔªËØ¸öÊýÊÇ£¨£©¡£ A. (rear-front+m)%m B. rear-front+1 C. rear-front-1 D. rear-front 25¡¢ÔÚ½â¾ö¼ÆËã»úÖ÷»úºÍ´òÓ¡»úÖ®¼äËٶȲ»Æ¥ÅäÎÊÌâʱ£¬Í¨³£ÉèÖÃÒ»¸ö´òÓ¡Êý¾Ý»º³åÇø£¬Ö÷»ú½«ÒªÊä³öµÄÊý¾ÝÒÀ´ÎдÈë¸Ã»º³åÇø£¬¶ø´òÓ¡»úÔò´Ó¸Ã»º³åÇøÖÐÈ¡×ßÊý¾Ý´òÓ¡¡£¸Ã»º³åÇøÓ¦¸ÃÊÇÒ»¸ö£¨£©½á¹¹¡£ A. ¶ÑÕ» B. ¶ÓÁÐ C. Êý×é D. ÏßÐÔ±í 26¡¢Õ»ºÍ¶ÓÁж¼ÊÇ£¨£©¡£ A. Á´Ê½´æ´¢µÄÏßÐԽṹ B. Á´Ê½´æ´¢µÄ·ÇÏßÐԽṹ C. ÏÞÖÆ´æÈ¡µãµÄÏßÐԽṹ D. ÏÞÖÆ´æÈ¡µãµÄ·ÇÏßÐԽṹ 27¡¢ÔÚÒ»¸öÁ´¶ÓÁÐÖУ¬¼Ù¶¨frontºÍrear·Ö±ðΪ¶ÓÍ·Ö¸ÕëºÍ¶ÓβָÕ룬ɾ³ýÒ»¸ö½áµãµÄ²Ù×÷ÊÇ£¨£©¡£ A. front=front->next B. rear= rear->next C. rear->next=front D. front->next=rear 28¡¢¶ÓºÍÕ»µÄÖ÷񻂿±ðÊÇ£¨£©¡£ A. Âß¼½á¹¹²»Í¬ B.´æ´¢½á¹¹²»Í¬ C. Ëù°üº¬µÄÔËËã¸öÊý²»Í¬ D. ÏÞ¶¨²åÈëºÍɾ³ýµÄλÖò»Í¬ ¶þ¡¢Ìî¿ÕÌâ 1¡¢ÉèÕ»SºÍ¶ÓÁÐQµÄ³õʼ״̬Ϊ¿Õ£¬ÔªËØe1,e2,e3,e4,e5,e6ÒÀ´Îͨ¹ýÕ»S£¬Ò»¸öÔªËØ³öÕ»ºó¼´½øÈë¶ÓÁÐQ£¬Èô6¸öÔªËØ³ö¶ÓµÄÐòÁÐÊÇe2,e4,e3,e6,e5,e1£¬ÔòÕ»µÄÈÝÁ¿ÖÁÉÙÓ¦¸ÃÊÇ¡£ ´ð°¸£º3 2¡¢Ò»¸öÑ»·¶ÓÁÐQµÄ´æ´¢¿Õ¼ä´óСΪM,Æä¶ÓÍ·ºÍ¶ÓβָÕë·Ö±ðΪfrontºÍrear£¬ÔòÑ»·¶ÓÁÐÖÐÔªËØµÄ¸öÊýΪ£º¡£ ´ð°¸£º(rear-front+M)%M 3¡¢ÔÚ¾ßÓÐn¸öÔªËØµÄÑ»·¶ÓÁÐÖУ¬¶ÓÂúʱ¾ßÓиöÔªËØ¡£ ´ð°¸£ºn-1 4¡¢ÉèÑ»·¶ÓÁеÄÈÝÁ¿Îª70£¬ÏÖ¾¹ýһϵÁеÄÈë¶ÓºÍ³ö¶Ó²Ù×÷ºó£¬frontΪ20£¬rearΪ11£¬Ôò¶ÓÁÐÖÐÔªËØµÄ¸öÊýΪ¡£ ´ð°¸£º61 5¡¢ÒÑ֪ѻ·¶ÓÁеĴ洢¿Õ¼ä´óСΪ20£¬ÇÒµ±Ç°¶ÓÁеÄÍ·Ö¸ÕëºÍβָÕëµÄÖµ·Ö±ðΪ8ºÍ3£¬ÇҸöÓÁеĵ±Ç°µÄ³¤¶ÈΪ_______¡£ Èý¡¢ÅжÏÌâ 1¡¢Õ»ºÍ¶ÓÁж¼ÊÇÊÜÏÞµÄÏßÐԽṹ¡£? 2¡¢ÔÚµ¥Á´±íÖУ¬Òª·ÃÎÊij¸ö½áµã£¬Ö»ÒªÖªµÀ¸Ã½áµãµÄµØÖ·¼´¿É£»Òò´Ë£¬µ¥Á´±íÊÇÒ»ÖÖËæ»ú´æÈ¡½á¹¹¡£? 3¡¢ÒÔÁ´±í×÷ΪջµÄ´æ´¢½á¹¹£¬³öÕ»²Ù×÷±ØÐëÅбðÕ»¿ÕµÄÇé¿ö¡£? ËÄ¡¢³ÌÐò·ÖÎöÌî¿ÕÌâ 1¡¢ÒÑÖªÕ»µÄ»ù±¾²Ù×÷º¯Êý£º int InitStack(SqStack *S); //¹¹Ôì¿ÕÕ» int StackEmpty(SqStack *S);//ÅжÏÕ»¿Õ int Push(SqStack *S,ElemType e);//ÈëÕ» int Pop(SqStack *S,ElemType *e);//³öÕ» º¯ÊýconversionʵÏÖÊ®½øÖÆÊýת»»Îª°Ë½øÖÆÊý£¬Ç뽫º¯Êý²¹³äÍêÕû¡£ void conversion(){ InitStack(S); scanf(¡°%d¡±,&N); while(N){ £¨1£©; N=N/8; } while(£¨2£©){ Pop(S,&e); printf(¡°%d¡±,e); } }//conversion ´ð°¸£º£¨1£©Push(S,N%8) £¨2£©!StackEmpty(S) 2¡¢Ð´³öËã·¨µÄ¹¦ÄÜ¡£ int function(SqQueue *Q,ElemType *e){ if(Q->front==Q->rear) return ERROR; *e=Q->base[Q->front]; Q->front=(Q->front+1)%MAXSIZE; return OK; } 3¡¢ÔĶÁËã·¨f2,²¢»Ø´ðÏÂÁÐÎÊÌ⣺ £¨1£©Éè¶ÓÁÐQ=£¨1£¬3£¬5£¬2£¬4£¬6£©¡£Ð´³öÖ´ÐÐËã·¨f2ºóµÄ¶ÓÁÐQ; £¨2£©¼òÊöËã·¨f2µÄ¹¦ÄÜ¡£ void f2(Queue *Q){ DataType e; if (!QueueEmpty(Q)){ e=DeQueue(Q); f2(Q); EnQueue(Q,e); } } ´ð°¸£º£¨1£©6,4,2,5,3,1 £¨2£©½«¶ÓÁе¹Öà Îå¡¢×ÛºÏÌâ 1¡¢¼ÙÉèÒÔ´øÍ·½áµãµÄÑ»·Á´±í±íʾ¶ÓÁУ¬²¢ÇÒÖ»ÉèÒ»¸öÖ¸ÕëÖ¸Ïò¶Óβ½áµã£¬µ«²»ÉèÍ·Ö¸Õ룬Çëд³öÏàÓ¦µÄÈë¶ÓÁÐËã·¨£¨Óú¯ÊýʵÏÖ£©¡£ rear ´ð°¸£ºvoid EnQueue(Lnode *rear, ElemType e) { Lnode *new; New=(Lnode *)malloc(sizeof(Lnode)); If(!new) return ERROR; new->data=e; new->next=rear->next; rear->next=new; rear =new; } 2¡¢ÒÑÖªQÊÇÒ»¸ö·Ç¿Õ¶ÓÁУ¬SÊÇÒ»¸ö¿ÕÕ»¡£±àдËã·¨£¬½öÓöÓÁкÍÕ»µÄADTº¯ÊýºÍÉÙÁ¿¹¤×÷±äÁ¿£¬½«¶ÓÁÐQµÄËùÓÐÔªËØÄæÖᣠջµÄADTº¯ÊýÓУº void makeEmpty(SqStack s); ÖÿÕÕ» void push(SqStack s,ElemType e); ÔªËØeÈëÕ» ElemType pop(SqStack s); ³öÕ»£¬·µ»ØÕ»¶¥ÔªËØ int isEmpty(SqStack s); ÅжÏÕ»¿Õ ¶ÓÁеÄADTº¯ÊýÓУº void enQueue(Queue q,ElemType e); ÔªËØeÈë¶Ó ElemType deQueue(Queue q); ³ö¶Ó£¬·µ»Ø¶ÓÍ·ÔªËØ int isEmpty(Queue q); ÅÐ¶Ï¶Ó¿Õ ´ð°¸£ºvoid QueueInvent(Queue q) { ElemType x; makeEmpty(SqStack s); while(!isEmpty(Queue q)) {x=deQueue(Queue q); push(SqStack s, ElemTypex);} while(!isEmpty(SqStack s)) {x=pop(SqStack s); enQueue(Queue q, ElemType x);} } 3¡¢¶ÔÓÚÒ»¸öÕ»£¬¸ø³öÊäÈëÏîA,B,C,D£¬Èç¹ûÊäÈëÏîÐòÁÐΪA,B,C,D£¬ÊÔ¸ø³öÈ«²¿¿ÉÄܵÄÊä³öÐòÁС£ ´ð°¸£º³öÕ»µÄ¿ÉÄÜÐòÁУº ABCD ABDC ACDB ACBD ADCB BACD BADC BCAD BCDA CBDA CBAD CDBA DCBA µÚÎåÕ Êý×éºÍ¹ãÒå±í Ò»¡¢Ñ¡ÔñÌâ 1¡¢Éè¹ãÒå±íL=((a£¬b£¬c))£¬ÔòLµÄ³¤¶ÈºÍÉî¶È·Ö±ðΪ£¨C £©¡£ A. 1ºÍ1 B. 1ºÍ3 C. 1ºÍ2 D. 2ºÍ3 2¡¢¹ãÒå±í((a),a)µÄ±íβÊÇ£¨B £©¡£ A. a B. (a) C. () D. ((a)) 3¡¢Ï¡Êè¾ØÕóµÄ³£¼ûѹËõ´æ´¢·½·¨ÓУ¨ C £©Á½ÖÖ¡£ A.¶þάÊý×éºÍÈýάÊý×é B.ÈýÔª×éºÍÉ¢Áбí C.ÈýÔª×éºÍÊ®×ÖÁ´±í D.É¢ÁбíºÍÊ®×ÖÁ´±í 4¡¢Ò»¸ö·Ç¿Õ¹ãÒå±íµÄ±íÍ·£¨D£©¡£ A. ²»¿ÉÄÜÊÇ×Ó±í B.Ö»ÄÜÊÇ×Ó±í C. Ö»ÄÜÊÇÔ×Ó D.¿ÉÒÔÊÇ×Ó±í»òÔ×Ó 5¡¢Êý×éA[0..5,0..6]µÄÿ¸öÔªËØÕ¼5¸ö×Ö½Ú£¬½«Æä°´ÁÐÓÅÏÈ´ÎÐò´æ´¢ÔÚÆðʼµØÖ·Îª1000µÄÄÚ´æµ¥ÔªÖУ¬ÔòÔªËØA[5][5]µÄµØÖ·ÊÇ£¨A£©¡£ A. 1175 B. 1180 C. 1205 D. 1210 6¡¢¹ãÒå±íG=(a,b(c,d,(e,f)),g)µÄ³¤¶ÈÊÇ£¨ A £©¡£ A. 3 B. 4 C. 7 D. 8 7¡¢²ÉÓÃÏ¡Êè¾ØÕóµÄÈýÔª×é±íÐÎʽ½øÐÐѹËõ´æ´¢£¬ÈôÒªÍê³É¶ÔÈýÔª×é±í½øÐÐתÖã¬Ö»Òª½«ÐкÍÁжԻ»£¬ÕâÖÖ˵·¨£¨ B £©¡£ A. ÕýÈ· B. ´íÎó C. ÎÞ·¨È·¶¨ D. ÒÔÉϾù²»¶Ô 8¡¢¹ãÒå±í(a,b,c)µÄ±íβÊÇ£¨ B £©¡£ A. b,c B. (b,c) C. c D. (c) 9¡¢³£¶ÔÊý×é½øÐÐÁ½ÖÖ»ù±¾²Ù×÷ÊÇ£¨ C £©¡£ A. ½¨Á¢ºÍɾ³ý B. Ë÷ÒýºÍÐÞ¸Ä C. ²éÕÒºÍÐÞ¸Ä D. ²éÕÒÓëË÷Òý 10¡¢¶ÔÒ»Ð©ÌØÊâ¾ØÕó²ÉÓÃѹËõ´æ´¢µÄÄ¿µÄÖ÷ÒªÊÇΪÁË£¨D £©¡£ A. ±í´ï±äµÃ¼òµ¥ B.¶Ô¾ØÕóÔªËØµÄ´æÈ¡±äµÃ¼òµ¥ C. È¥µô¾ØÕóÖеĶàÓàÔªËØ D. ¼õÉÙ²»±ØÒªµÄ´æ´¢¿Õ¼äµÄ¿ªÏú 11¡¢ÉèÓÐÒ»¸ö10½×µÄ¶Ô³Æ¾ØÕóA£¬²ÉÓÃѹËõ´æ´¢·½Ê½£¬ÒÔÐÐÐòΪÖ÷´æ´¢£¬a11ΪµÚÒ»¸öÔªËØ£¬Æä´æ´¢µØÖ·Îª1£¬Ã¿ÔªËØÕ¼1¸öµØÖ·¿Õ¼ä£¬Ôòa85µÄµØÖ·Îª£¨£©¡£ A. 13 B. 33 C. 18 D. 40 12¡¢Éè¾ØÕóAÊÇÒ»¸ö¶Ô³Æ¾ØÕó£¬ÎªÁ˽ÚÊ¡´æ´¢£¬½«ÆäÏÂÈý½Ç²¿·Ö°´ÐÐÐò´æ·ÅÔÚһάÊý×éB[1,n(n-1)/2]ÖУ¬¶ÔÏÂÈý½Ç²¿·ÖÖÐÈÎÒ»ÔªËØai,j(i>=j)£¬ÔÚһάÊý×éBµÄϱêλÖÃkµÄÖµÊÇ£¨ B £©¡£ A. i(i-1)/2+j-1 B. i(i-1)/2+j C. i(i+1)/2+j-1 D. i(i+1)/2+j 13¡¢¹ãÒå±íA=((a),a)µÄ±íÍ·ÊÇ£¨ B £©¡£ A. a B. (a) C. b D. ((a)) 14¡¢Ï¡Êè¾ØÕóÒ»°ãµÄѹËõ´æ´¢·½·¨ÓÐÁ½ÖÖ£¬¼´£¨C£©¡£ A. ¶þάÊý×éºÍÈýάÊý×é B.ÈýÔª×éºÍÉ¢ÁÐ C.ÈýÔª×éºÍÊ®×ÖÁ´±í D.É¢ÁкÍÊ®×ÖÁ´±í 15¡¢¼ÙÉèÒÔÈýÔª×é±í±íʾϡÊè¾ØÕó£¬ÔòÓëÈçͼËùʾÈýÔª×é±í¶ÔÓ¦µÄ4¡Á5µÄÏ¡Êè¾ØÕóÊÇ£¨×¢£º¾ØÕóµÄÐÐÁÐϱê¾ù´Ó1¿ªÊ¼£©£¨B£©¡£ ?0?8?0?7A. ?00???50??0?8?0?0C. ?70???50?00040004600060000??0? 0??0??0??3? 0??0???0?8?0?7B.??50??00??0?8?0?7D.??50??00?00400040600060000??3? 0??0??0??0? 3??0?? 16¡¢ÒÔÏÂÓйعãÒå±íµÄ±íÊöÖУ¬ÕýÈ·µÄÊÇ£¨A£©¡£ A. ÓÉ0¸ö»ò¶à¸öÔ×Ó»ò×Ó±í¹¹³ÉµÄÓÐÏÞÐòÁÐ B. ÖÁÉÙÓÐÒ»¸öÔªËØÊÇ×Ó±í C. ²»Äܵݹ鶨Òå D. ²»ÄÜΪ¿Õ±í 17¡¢¶Ô¹ãÒå±íL=((a,b),((c,d),(e,f)))Ö´ÐÐhead(tail(head(tail(L))))²Ù×÷µÄ½á¹ûÊÇ£¨£©¡£ A. µÄ B. e C. (e) D.£¨e,f£© ¶þ¡¢ÅжÏÌâ £¨£©1¡¢¹ãÒå±íÖÐÔ×Ó¸öÊý¼´Îª¹ãÒå±íµÄ³¤¶È¡£ £¨£©2¡¢Ò»¸öÏ¡Êè¾ØÕó²ÉÓÃÈýÔª×é±íʾ£¬Èô°ÑÈýÔª×éÖÐÓйØÐÐϱêÓëÁÐϱêµÄÖµ»¥»»£¬²¢°ÑmuºÍnuµÄÖµ½øÐл¥»»£¬ÔòÍê³ÉÁ˾ØÕóתÖᣠ£¨¡Ì£©3¡¢Ï¡Êè¾ØÕóѹËõ´æ´¢ºó£¬±Ø»áÊ§È¥Ëæ»ú´æÈ¡¹¦ÄÜ¡£ £¨£©4¡¢¹ãÒå±íµÄ³¤¶ÈÊÇÖ¸¹ãÒå±íÖÐÀ¨ºÅǶÌ׵IJãÊý¡£ £¨¡Ì£©5¡¢¹ãÒå±íÊÇÒ»ÖÖ¶à²ã´ÎµÄÊý¾Ý½á¹¹£¬ÆäÔªËØ¿ÉÒÔÊǵ¥Ô×ÓÒ²¿ÉÒÔÊÇ×Ó±í¡£ Èý¡¢Ìî¿ÕÌâ 1¡¢ÒÑÖª¶þάÊý×éA[m][n]²ÉÓÃÐÐÐòΪÖ÷·½Ê½´æ´¢£¬Ã¿¸öÔªËØÕ¼k¸ö´æ´¢µ¥Ôª£¬²¢ÇÒµÚÒ»¸öÔªËØµÄ´æ´¢µØÖ·ÊÇLOC(A[0][0])£¬ÔòA[i][j]µÄµØÖ·ÊÇ___ Loc(A[0][0])+(i*N+j)*k ____¡£ 2¡¢¹ãÒå±íÔËËãʽHEAD(TAIL((a,b,c),(x,y,z)))µÄ½á¹ûÊÇ£º(x,y,z)¡£ 3¡¢¶þάÊý×飬¿ÉÒÔ°´ÕÕÁ½ÖÖ²»Í¬µÄ´æ´¢·½Ê½¡£ 4¡¢Ï¡Êè¾ØÕóµÄѹËõ´æ´¢·½Ê½ÓУººÍ¡£ ËÄ¡¢×ÛºÏÌâ 1¡¢ÏÖÓÐÒ»¸öÏ¡Êè¾ØÕó£¬Çë¸ø³öËüµÄÈýÔª×é±í¡£ ?0?1??0??00?000?? 210??0?20?31´ð°¸£º i112334j231233v31121-2 µÚÁùÕ Ê÷ Ò»¡¢Ñ¡ÔñÌâ 1¡¢¶þ²æÊ÷µÄÉî¶ÈΪk£¬Ôò¶þ²æÊ÷×î¶àÓУ¨ C £©¸ö½áµã¡£ A. 2k B. 2k-1 C. 2k-1 D. 2k-1 2¡¢ÓÃ˳Ðò´æ´¢µÄ·½·¨£¬½«ÍêÈ«¶þ²æÊ÷ÖÐËùÓнáµã°´²ãÖð¸ö´Ó×óµ½ÓÒµÄ˳Ðò´æ·ÅÔÚһάÊý×éR[1..N]ÖУ¬Èô½áµãR[i]ÓÐÓÒº¢×Ó£¬ÔòÆäÓÒº¢×ÓÊÇ£¨ B £©¡£ A. R[2i-1] B. R[2i+1] C. R[2i] D. R[2/i] 3¡¢Éèa,bΪһ¿Ã¶þ²æÊ÷ÉϵÄÁ½¸ö½áµã£¬ÔÚÖÐÐò±éÀúʱ£¬aÔÚbÇ°ÃæµÄÌõ¼þÊÇ£¨ B£©¡£ A. aÔÚbµÄÓÒ·½ B. aÔÚbµÄ×ó·½ C. aÊÇbµÄ׿ÏÈ D. aÊÇbµÄ×ÓËï 4¡¢ÉèÒ»¿Ã¶þ²æÊ÷µÄÖÐÐò±éÀúÐòÁУºbadce£¬ºóÐò±éÀúÐòÁУºbdeca£¬Ôò¶þ²æÊ÷ÏÈÐò±éÀúÐòÁÐΪ£¨£©¡£ A. adbce B. decab C. debac D. abcde 5¡¢ÔÚÒ»¿Ã¾ßÓÐ5²ãµÄÂú¶þ²æÊ÷Öнáµã×ÜÊýΪ£¨A£©¡£ A. 31 B. 32 C. 33 D. 16 6¡¢Óɶþ²æÊ÷µÄǰÐòºÍºóÐò±éÀúÐòÁУ¨ B £©Î©Ò»È·¶¨Õâ¿Ã¶þ²æÊ÷¡£ A. ÄÜ B. ²»ÄÜ 7¡¢Ä³¶þ²æÊ÷µÄÖÐÐòÐòÁÐΪABCDEFG£¬ºóÐòÐòÁÐΪBDCAFGE£¬ÔòÆä×ó×ÓÊ÷ÖнáµãÊýĿΪ£¨ C £©¡£ A. 3 B. 2 C. 4 D. 5 8¡¢ÈôÒÔ{4,5,6,7,8}×÷ΪȨֵ¹¹Ôì¹þ·òÂüÊ÷£¬Ôò¸ÃÊ÷µÄ´øÈ¨Â·¾¶³¤¶ÈΪ£¨C£©¡£ A. 67 B. 68 C. 69 D. 70 9¡¢½«Ò»¿ÃÓÐ100¸ö½áµãµÄÍêÈ«¶þ²æÊ÷´Ó¸ùÕâÒ»²ã¿ªÊ¼£¬Ã¿Ò»²ãÉÏ´Ó×óµ½ÓÒÒÀ´Î¶Ô½áµã½øÐбàºÅ£¬¸ù½áµãµÄ±àºÅΪ1£¬Ôò±àºÅΪ49µÄ½áµãµÄ×óº¢×Ó±àºÅΪ£¨ A £©¡£ A. 98 B. 99 C. 50 D. 48 10¡¢±í´ïʽa*(b+c)-dµÄºó׺±í´ïʽÊÇ£¨ B £©¡£ A. abcd+- B. abc+*d- C. abc*+d- D. -+*abcd 11¡¢¶Ôij¶þ²æÊ÷½øÐÐÏÈÐò±éÀúµÄ½á¹ûΪABDEFC£¬ÖÐÐò±éÀúµÄ½á¹ûΪDBFEAC£¬ÔòºóÐò±éÀúµÄ½á¹ûÊÇ£¨B £©¡£ A. DBFEAC B. DFEBCA C. BDFECA D. BDEFAC 12¡¢Ê÷×îÊʺÏÓÃÀ´±íʾ£¨ C £©¡£ A. ÓÐÐòÊý¾ÝÔªËØ B. ÎÞÐòÊý¾ÝÔªËØ C. ÔªËØÖ®¼ä¾ßÓзÖÖ§²ã´Î¹ØÏµµÄÊý¾Ý D. ÔªËØÖ®¼äÎÞÁªÏµµÄÊý¾Ý 13¡¢±í´ïʽA*(B+C)/(D-E+F)µÄºó׺±í´ïʽÊÇ£¨C £©¡£ A. A*B+C/D-E+F B. AB*C+D/E-F+ C. ABC+*DE-F+/ ABCDED*+/-+ 14¡¢ÔÚÏßË÷¶þ²æÊ÷ÖУ¬tËùÖ¸½áµãûÓÐ×ó×ÓÊ÷µÄ³äÒªÌõ¼þÊÇ£¨£©¡£ A. t->left==NULL B.t->ltag==1 C. D. t->ltag==1&&t->left==NULL D.ÒÔÉ϶¼²»¶Ô 15¡¢ÈκÎÒ»¿Ã¶þ²æÊ÷µÄÒ¶½áµãÔÚÏÈÐò¡¢ÖÐÐòºÍºóÐò±éÀúÐòÁÐÖеÄÏà¶Ô´ÎÐò£¨£©¡£ A. ²»·¢Éú¸Ä±ä B. ·¢Éú¸Ä±ä C. ²»ÄÜÈ·¶¨ D. ÒÔÉ϶¼²»¶Ô 16¡¢¼Ù¶¨ÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬¶ÈΪ2µÄ½áµãÊýΪ15£¬¶ÈΪ1µÄ½áµãÊýΪ30£¬ÔòÒ¶×Ó½áµãÊýΪ£¨£©¸ö¡£ A. 15 B. 16 C. 17 D. 47 17¡¢ÔÚÏÂÁÐÇé¿öÖУ¬¿É³ÆÎª¶þ²æÊ÷µÄÊÇ£¨B £©¡£ A.ÿ¸ö½áµãÖÁ¶àÓÐÁ½¿Ã×ÓÊ÷µÄÊ÷ B. ¹þ·òÂüÊ÷ C. ÿ¸ö½áµãÖÁ¶àÓÐÁ½¿Ã×ÓÊ÷µÄÓÐÐòÊ÷ D. ÿ¸ö½áµãÖ»ÓÐÒ»¿Ã×ÓÊ÷ 18¡¢ÓÃ˳Ðò´æ´¢µÄ·½·¨£¬½«ÍêÈ«¶þ²æÊ÷ÖÐËùÓнáµã°´²ãÖð¸ö´Ó×óµ½ÓÒµÄ˳Ðò´æ·ÅÔÚһάÊý×éR[1..n]ÖУ¬Èô½áµãR[i]ÓÐ×óº¢×Ó£¬ÔòÆä×óº¢×ÓÊÇ£¨£©¡£ A. R[2i-1] B. R[2i+1] C. R[2i] D. R[2/i] 19¡¢ÏÂÃæËµ·¨ÖÐÕýÈ·µÄÊÇ£¨£©¡£ A. ¶ÈΪ2µÄÊ÷ÊǶþ²æÊ÷ B. ¶ÈΪ2µÄÓÐÐòÊ÷ÊǶþ²æÊ÷ D.×ÓÊ÷ÓÐÑϸñ×óÓÒÖ®·Ö£¬ÇÒ¶È C. ×ÓÊ÷ÓÐÑϸñ×óÓÒÖ®·ÖµÄÊ÷ÊǶþ²æÊ÷ ²»³¬¹ý2µÄÊ÷ÊǶþ²æÊ÷ 20¡¢Ê÷µÄÏȸùÐòÁеÈͬÓÚÓë¸ÃÊ÷¶ÔÓ¦µÄ¶þ²æÊ÷µÄ£¨£©¡£ A. ÏÈÐòÐòÁÐ B. ÖÐÐòÐòÁÐ C. ºóÐòÐòÁÐD. ²ãÐòÐòÁÐ 21¡¢°´ÕÕ¶þ²æÊ÷µÄ¶¨Ò壬¾ßÓÐ3¸ö½áµãµÄ¶þ²æÊ÷ÓУ¨C£©ÖÖ¡£ A. 3 B.4 C.5 D.6 22¡¢ÓÉȨֵΪ3£¬6£¬7£¬2£¬5µÄÒ¶×Ó½áµãÉú³ÉÒ»¿Ã¹þ·òÂüÊ÷£¬ËüµÄ´øÈ¨Â·¾¶³¤¶ÈΪ£¨A£©¡£ A.51 B. 23 C. 53 D. 74 ¶þ¡¢ÅжÏÌâ £¨£©1¡¢´æÔÚÕâÑùµÄ¶þ²æÊ÷£¬¶ÔËü²ÉÓÃÈκδÎÐòµÄ±éÀú£¬½á¹ûÏàͬ¡£ £¨£©2¡¢ÖÐÐò±éÀúÒ»¿Ã¶þ²æÅÅÐòÊ÷µÄ½áµã£¬¿ÉµÃµ½ÅźÃÐòµÄ½áµãÐòÁС£ £¨£©3¡¢¶ÔÓÚÈÎÒâ·Ç¿Õ¶þ²æÊ÷£¬ÒªÉè¼ÆÆäºóÐò±éÀúµÄ·ÇµÝ¹éËã·¨¶ø²»Ê¹ÓöÑÕ»½á¹¹£¬×îÊʺϵķ½·¨ÊǶԸöþ²æÊ÷²ÉÓÃÈý²æÁ´±í¡£ £¨£©4¡¢ÔÚ¹þ·òÂü±àÂëÖУ¬µ±Á½¸ö×Ö·û³öÏֵįµÂÊÏàͬʱ£¬Æä±àÂëÒ²Ïàͬ£¬¶ÔÓÚÕâÖÖÇé¿öÓ¦×öÌØÊâ´¦Àí¡£ £¨¡Ì£©5¡¢Ò»¸öº¬ÓÐn¸ö½áµãµÄÍêÈ«¶þ²æÊ÷£¬ËüµÄ¸ß¶ÈÊÇ?log2n?£«1¡£ £¨¡Ì£©6¡¢ÍêÈ«¶þ²æÊ÷µÄij½áµãÈôÎÞ×óº¢×Ó£¬ÔòËü±ØÊÇÒ¶½áµã¡£ Èý¡¢Ìî¿ÕÌâ 1¡¢¾ßÓÐn¸ö½áµãµÄÍêÈ«¶þ²æÊ÷µÄÉî¶ÈÊÇ?log2n?+1¡£ 2¡¢¹þ·òÂüÊ÷ÊÇÆäÊ÷µÄ´øÈ¨Â·¾¶³¤¶È×îСµÄ¶þ²æÊ÷¡£ 3¡¢ÔÚÒ»¿Ã¶þ²æÊ÷ÖУ¬¶ÈΪ0µÄ½áµãµÄ¸öÊýÊÇn0£¬¶ÈΪ2µÄ½áµãµÄ¸öÊýΪn2£¬ÔòÓÐn0=N2+1¡£ 4¡¢Ê÷ÄÚ¸÷½áµã¶ÈµÄ×î´óÖµ³ÆÎªÊ÷µÄ¶È¡£ ËÄ¡¢´úÂëÌî¿ÕÌâ 1¡¢º¯ÊýInOrderTraverse(Bitree bt)ʵÏÖ¶þ²æÊ÷µÄÖÐÐò±éÀú£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ void InOrderTraverse(BiTree bt){ if(){ InOrderTraverse(bt->lchild); printf(¡°%c¡±,bt->data); ; } } 2¡¢º¯ÊýdepthʵÏÖ·µ»Ø¶þ²æÊ÷µÄ¸ß¶È£¬ÇëÔÚ¿Õ¸ñ´¦½«Ëã·¨²¹³äÍêÕû¡£ int depth(Bitree *t){ if(t==NULL) return 0; else{ hl=depth(t->lchild); } hr=depth(t->rchild); if(hl>hr) return hl+1; else return hr+1; } 3¡¢Ð´³öÏÂÃæËã·¨µÄ¹¦ÄÜ¡£ Bitree *function(Bitree *bt){ Bitree *t,*t1,*t2; if(bt==NULL) t=NULL; else{ t=(Bitree *)malloc(sizeof(Bitree)); t->data=bt->data; t1=function(bt->left); t2=function(bt->right); t->left=t2; t->right=t1; } return(t); } ´ð°¸£º½»»»¶þ²æÊ÷½áµã×óÓÒ×ÓÊ÷µÄµÝ¹éËã·¨ 4¡¢Ð´³öÏÂÃæËã·¨µÄ¹¦ÄÜ¡£ void function(Bitree *t){ if(p!=NULL){ function(p->lchild); } function(p->rchild); printf(¡°%d¡±,p->data); } ´ð°¸£º¶þ²æÊ÷ºóÐò±éÀúµÝ¹éËã·¨ Îå¡¢×ÛºÏÌâ 1¡¢¼ÙÉèÒÔÓÐÐò¶Ô ±íʾ´ÓË«Ç×½áµãµ½º¢×Ó½áµãµÄÒ»Ìõ±ß£¬ÈôÒÑÖªÊ÷Öбߵļ¯ºÏΪ{,,, £¨1£©Äĸö½áµãÊǸù½áµã£¿ £¨2£©ÄÄЩ½áµãÊÇÒ¶×Ó½áµã£¿ £¨3£©ÄÄЩ½áµãÊÇkµÄ׿ÏÈ£¿ £¨4£©ÄÄЩ½áµãÊÇjµÄÐֵܣ¿ £¨5£©Ê÷µÄÉî¶ÈÊǶàÉÙ£¿¡£ 2¡¢¼ÙÉèÒ»¿Ã¶þ²æÊ÷µÄÏÈÐòÐòÁÐΪEBADCFHGIKJ£¬ÖÐÐòÐòÁÐΪABCDEFGHIJK£¬Ç뻳ö¸Ã¶þ²æÊ÷¡£ 3¡¢¼ÙÉèÓÃÓÚͨѶµÄµçÎĽöÓÉ8¸ö×ÖĸA¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G¡¢H×é³É£¬×ÖĸÔÚµçÎÄÖгöÏֵįµÂÊ·Ö±ðΪ£º0.07£¬0.19£¬0.02£¬0.06£¬0.32£¬0.03£¬0.21£¬0.10¡£ÇëΪÕâ8¸ö×ÖĸÉè¼Æ¹þ·òÂü±àÂë¡£ 10001B 101A 00038010621C 10000170121G032301ED 1001E 11F 10001G 01H 0017A10H01116D19B50123CF´ð°¸£º 4¡¢ÒÑÖª¶þ²æÊ÷µÄÏÈÐò±éÀúÐòÁÐΪABCDEFGH£¬ÖÐÐò±éÀúÐòÁÐΪCBEDFAGH£¬»³ö¶þ²æÊ÷¡£ ´ð°¸£º¶þ²æÊ÷ÐÎ̬ ABCEDFGH 5¡¢ÊÔÓÃȨ¼¯ºÏ{12,4,5,6,1,2}¹¹Ôì¹þ·òÂüÊ÷£¬²¢¼ÆËã¹þ·òÂüÊ÷µÄ´øÈ¨Â·¾¶³¤¶È¡£ ´ð°¸£º 301218743125116 WPL=12*1+(4+5+6)*3+(1+2)*4=12+45+12=69 6¡¢ÒÑ֪Ȩֵ¼¯ºÏΪ{5,7,2,3,6,9}£¬ÒªÇó¸ø³ö¹þ·òÂüÊ÷£¬²¢¼ÆËã´øÈ¨Â·¾¶³¤¶ÈWPL¡£ ´ð°¸£º(1)Ê÷ÐÎ̬£º 321367919105523 (2)´øÈ¨Â·¾¶³¤¶È£ºWPL=(6+7+9)*2+5*3+(2+3)*4=44+15+20=79 7¡¢ÒÑÖªÒ»¿Ã¶þ²æÊ÷µÄÏÈÐòÐòÁУºABDGJEHCFIKL£»ÖÐÐòÐòÁУºDJGBEHACKILF¡£»³ö¶þ²æÊ÷µÄÐÎ̬¡£ ABDGJEHKILCF´ð°¸£º 8¡¢Ò»·ÝµçÎÄÖÐÓÐ6ÖÖ×Ö·û£ºA,B,C,D,E,F£¬ËüÃǵijöÏÖÆµÂÊÒÀ´ÎΪ16£¬5£¬9£¬3£¬30£¬1£¬Íê³ÉÎÊÌ⣺ £¨1£©Éè¼ÆÒ»¿Ã¹þ·òÂüÊ÷£»£¨»³öÆäÊ÷½á¹¹£© £¨2£©¼ÆËãÆä´øÈ¨Â·¾¶³¤¶ÈWPL£» ´ð°¸£º(1)Ê÷ÐÎ̬£º 6430341618995413 (2)´øÈ¨Â·¾¶³¤¶È£ºWPL=30*1+16*2+9*3+5*4+(1+3)*5=30+32+27+20+20=129 9¡¢ÒÑ֪ijÉÁֵĶþ²æÊ÷ÈçÏÂËùʾ£¬ÊÔ»³öËüËù±íʾµÄÉÁÖ¡£ ABCEDHFG DCEGFH´ð°¸£º AB 10¡¢ÓÐÒ»·ÖµçÎĹ²Ê¹ÓÃ5¸ö×Ö·û;a,b,c,d,e£¬ËüÃǵijöÏÖÆµÂÊÒÀ´ÎΪ4¡¢7¡¢5¡¢2¡¢9£¬ÊÔ¹¹Ôì¹þ·òÂüÊ÷£¬²¢¸ø³öÿ¸ö×Ö·ûµÄ¹þ·òÂü±àÂë¡£ 11¡¢»³öÓëÏÂͼËùʾµÄÉÁÖÏà¶ÔÓ¦µÄ¶þ²æÊ÷£¬²¢Ö¸³öÉÁÖÖеÄÒ¶×Ó½áµãÔÚ¶þ²æÊ÷ÖоßÓÐÊ²Ã´ÌØµã¡£ ABCDIJNEFGKLMH 12¡¢ÈçÏÂËùʾµÄ¶þ²æÊ÷£¬Çëд³öÏÈÐò¡¢ÖÐÐò¡¢ºóÐò±éÀúµÄÐòÁС£ FDBEGIACHJ ´ð°¸£ºÏÈÐò£ºFDBACEGIHJ ÖÐÐò£ºABCDEFGHIJ ºóÐò£ºACBEDHJIGF Áù¡¢±à³ÌÌâ 1¡¢±àдÇóÒ»¿Ã¶þ²æÊ÷Öнáµã×ÜÊýµÄËã·¨¡£ ´ð°¸£º £¨ÒÔÏÈÐò±éÀúµÄ·½·¨ÎªÀý£© void count_preorder(Bitree *t, int *n) { if(t!=NULL) {*n++; count_preorder(t->lchild); count_preorder(t->lchild); } } µÚÆßÕ ͼ Ò»¡¢Ñ¡ÔñÌâ 1¡¢12¡¢¶ÔÓÚ¾ßÓÐn¸ö¶¥µãµÄͼ£¬Èô²ÉÓÃÁÚ½Ó¾ØÕó±íʾ£¬Ôò¸Ã¾ØÕóµÄ´óСΪ£¨£©¡£ A. n B. n2 C. n-1 D. (n-1)2 2¡¢Èç¹û´ÓÎÞÏòͼµÄÈÎÒ»¶¥µã³ö·¢½øÐÐÒ»´ÎÉî¶ÈÓÅÏÈËÑË÷¼´¿É·ÃÎÊËùÓж¥µã£¬Ôò¸Ãͼһ¶¨ÊÇ£¨£©¡£ A. Íêȫͼ B. Á¬Í¨Í¼ C. ÓлØÂ· D. Ò»¿ÃÊ÷ 3¡¢¹Ø¼ü·¾¶ÊÇʼþ½áµãÍøÂçÖУ¨£©¡£ A. ´ÓÔ´µãµ½»ãµãµÄ×·¾¶ B.´ÓÔ´µãµ½»ãµãµÄ×î¶Ì·¾¶ C.×µÄ»ØÂ· D.×î¶ÌµÄ»ØÂ· 4¡¢ÏÂÃæ£¨£©¿ÉÒÔÅжϳöÒ»¸öÓÐÏòͼÖÐÊÇ·ñÓл·£¨»ØÂ·£©¡£ A. ¹ã¶ÈÓÅÏȱéÀú B. ÍØÆËÅÅÐò C. Çó×î¶Ì·¾¶ D. Ç󹨼ü·¾¶ 5¡¢´øÈ¨ÓÐÏòͼGÓÃÁÚ½Ó¾ØÕóA´æ´¢£¬Ôò¶¥µãiµÄÈë¶ÈµÈÓÚAÖУ¨£©¡£ A. µÚiÐзÇÎÞÇîµÄÔªËØÖ®ºÍ B. µÚiÁзÇÎÞÇîµÄÔªËØ¸öÊýÖ®ºÍ C. µÚiÐзÇÎÞÇîÇÒ·Ç0µÄÔªËØ¸öÊý D. µÚiÐÐÓëµÚiÁзÇÎÞÇîÇÒ·Ç0µÄÔªËØÖ®ºÍ 6¡¢²ÉÓÃÁÚ½Ó±í´æ´¢µÄͼ£¬ÆäÉî¶ÈÓÅÏȱéÀúÀàËÆÓÚ¶þ²æÊ÷µÄ£¨£©¡£ A. ÖÐÐò±éÀú B. ÏÈÐò±éÀú C. ºóÐò±éÀú D. °´²ã´Î±éÀú 7¡¢ÎÞÏòͼµÄÁÚ½Ó¾ØÕóÊÇÒ»¸ö£¨£©¡£ A. ¶Ô³Æ¾ØÕó B. Áã¾ØÕó C. ÉÏÈý½Ç¾ØÕó D. ¶Ô½Ç¾ØÕó 8¡¢µ±ÀûÓôóСΪNµÄÊý×é´æ´¢Ñ»·¶ÓÁÐʱ£¬¸Ã¶ÓÁеÄ×î´ó³¤¶ÈÊÇ£¨£©¡£ A. N-2 B. N-1 C. N D. N+1 9¡¢ÁÚ½Ó±íÊÇͼµÄÒ»ÖÖ£¨£©¡£ A. ˳Ðò´æ´¢½á¹¹B.Á´Ê½´æ´¢½á¹¹ C. Ë÷Òý´æ´¢½á¹¹ D. É¢Áд洢½á¹¹ 10¡¢ÏÂÃæÓÐÏòͼËùʾµÄÍØÆËÅÅÐòµÄ½á¹ûÐòÁÐÊÇ£¨£©¡£ A. 125634 B. 516234 C. 123456 D. 521643 132564 11¡¢ÔÚÎÞÏòͼÖж¨Òå¶¥µãviÓëvjÖ®¼äµÄ·¾¶Îª´Óviµ½vjµÄÒ»¸ö£¨£©¡£ A. ¶¥µãÐòÁÐ B. ±ßÐòÁÐ C. Ȩֵ×ÜºÍ D. ±ßµÄÌõÊý 12¡¢ÔÚÓÐÏòͼµÄÄæÁÚ½Ó±íÖУ¬Ã¿¸ö¶¥µãÁÚ½Ó±íÁ´½Óןö¥µãËùÓУ¨£©Áڽӵ㡣 A. Èë±ß B. ³ö±ß C. Èë±ßºÍ³ö±ß D. ²»Êdzö±ßÒ²²»ÊÇÈë±ß 13¡¢ÉèG1=(V1,E1)ºÍG2=(V2,E2)ΪÁ½¸öͼ£¬Èç¹ûV1?V2,E1?E2Ôò³Æ£¨£©¡£ A. G1ÊÇG2µÄ×Óͼ B. G2ÊÇG1µÄ×Óͼ C. G1ÊÇG2µÄÁ¬Í¨·ÖÁ¿ D. G2ÊÇG1µÄÁ¬Í¨·ÖÁ¿ 14¡¢ÒÑÖªÒ»¸öÓÐÏòͼµÄÁÚ½Ó¾ØÕó±íʾ£¬ÒªÉ¾³ýËùÓдӵÚi¸ö½áµã·¢³öµÄ±ß£¬Ó¦£¨£©¡£ A. ½«ÁÚ½Ó¾ØÕóµÄµÚiÐÐɾ³ý B. ½«ÁÚ½Ó¾ØÕóµÄµÚiÐÐÔªËØÈ«²¿ÖÃΪ0 C. ½«ÁÚ½Ó¾ØÕóµÄµÚiÁÐɾ³ý D. ½«ÁÚ½Ó¾ØÕóµÄµÚiÁÐÔªËØÈ«²¿ÖÃΪ0 15¡¢ÈÎÒ»¸öÓÐÏòͼµÄÍØÆËÐòÁУ¨£©¡£ A.²»´æÔÚ B. ÓÐÒ»¸ö C. Ò»¶¨Óжà¸ö D. ÓÐÒ»¸ö»ò¶à¸ö 16¡¢ÔÚÒ»¸öÓÐÏòͼÖУ¬ËùÓж¥µãµÄÈë¶ÈÖ®ºÍµÈÓÚËùÓж¥µãµÄ³ö¶ÈÖ®ºÍµÄ£¨£©±¶¡£ A. 1/2 B. 1 C. 2 D. 4 17¡¢ÏÂÁйØÓÚͼ±éÀúµÄ˵·¨²»ÕýÈ·µÄÊÇ£¨£©¡£ A. Á¬Í¨Í¼µÄÉî¶ÈÓÅÏÈËÑË÷ÊÇÒ»¸öµÝ¹é¹ý³Ì B. ͼµÄ¹ã¶ÈÓÅÏÈËÑË÷ÖÐÁÚ½ÓµãµÄѰÕÒ¾ßÓС°ÏȽøÏȳö¡±µÄÌØÕ÷ C. ·ÇÁ¬Í¨Í¼²»ÄÜÓÃÉî¶ÈÓÅÏÈËÑË÷·¨ D. ͼµÄ±éÀúÒªÇóÿһ¶¥µã½ö±»·ÃÎÊÒ»´Î 18¡¢´øÈ¨ÓÐÏòͼGÓÃÁÚ½Ó¾ØÕóA´æ´¢£¬Ôò¶¥µãiµÄÈë¶ÈΪAÖУº£¨£©¡£ A. µÚiÐзÇ?µÄÔªËØÖ®ºÍ B. µÚiÁзÇ?µÄÔªËØÖ®ºÍ C. µÚiÐзÇ?ÇÒ·Ç0µÄÔªËØ¸öÊý D. µÚiÁзÇ?ÇÒ·Ç0µÄÔªËØ¸öÊý 19¡¢²ÉÓÃÁÚ½Ó±í´æ´¢µÄͼµÄ¹ã¶ÈÓÅÏȱéÀúËã·¨ÀàËÆÓÚ¶þ²æÊ÷µÄ£¨£©¡£ A. ÏÈÐò±éÀú B.ÖÐÐò±éÀú C. ºóÐò±éÀú D. °´²ã´Î±éÀú 20¡¢Ò»¸ö¾ßÓÐn¸ö¶¥µãµÄÓÐÏòͼ×î¶àÓУ¨£©Ìõ±ß¡£ A. n¡Á(n-1)/2 B. n¡Á(n-1) C. n¡Á(n+1)/2 D.n2 21¡¢ÒÑÖªÒ»¸öÓÐÏòͼµÄÁÚ½Ó±í´æ´¢½á¹¹ÈçͼËùʾ£¬¸ù¾ÝÉî¶ÈÓÅÏȱéÀúËã·¨£¬´Ó¶¥µãv1³ö·¢£¬ ËùµÃµ½µÄ¶¥µãÐòÁÐÊÇ£¨£©¡£ 123452445324 A. v1,v2,v3,v5,v4 C. v1,v3,v4,v5,v2 B.v1,v2,v3,v4,v5 D. v1,v4,v3,v5,v2 22¡¢¹Ø¼ü·¾¶ÊÇʼþ½áµãÍøÂçÖУ¨£©¡£ A. ´ÓÔ´µãµ½»ãµãµÄ×·¾¶ B. ´ÓÔ´µãµ½»ãµãµÄ×î¶Ì·¾¶ C. ×µÄ»ØÂ· D. ×î¶ÌµÄ»ØÂ· 23¡¢ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨£©¡£ A. Á¬Í¨·ÖÁ¿ÊÇÎÞÏòͼÖеļ«Ð¡Á¬Í¨×Óͼ B. Ç¿Á¬Í¨·ÖÁ¿ÊÇÓÐÏòͼÖеļ«´óÇ¿Á¬Í¨×Óͼ C.ÔÚÒ»¸öÓÐÏòͼµÄÍØÆËÐòÁÐÖÐÈô¶¥µãaÔÚ¶¥µãb֮ǰ£¬ÔòͼÖбØÓÐÒ»Ìõ»¡ D. ¶ÔÓÐÏòͼG£¬Èç¹ûÒÔÈÎÒ»¶¥µã³ö·¢½øÐÐÒ»´ÎÉî¶ÈÓÅÏÈ»ò¹ã¶ÈÓÅÏÈËÑË÷ÄÜ·ÃÎʵ½Ã¿¸ö¶¥µã£¬Ôò¸Ãͼһ¶¨ÊÇÍêȫͼ 24¡¢¼ÙÉèÓÐÏòͼº¬n¸ö¶¥µã¼°eÌõ»¡£¬Ôò±íʾ¸ÃͼµÄÁÚ½Ó±íÖаüº¬µÄ»¡½áµã¸öÊýΪ£¨£©¡£ A. n B. e C. 2e D. n*e ?011??? 25¡¢ÉèͼµÄÁÚ½Ó¾ØÕóΪ?001?£¬Ôò¸ÃͼΪ£¨£©¡£ ?010??? A. ÓÐÏòͼ B. ÎÞÏòͼ C.Ç¿Á¬Í¨Í¼ D. Íêȫͼ 26¡¢Îª±ãÓÚÅбðÓÐÏòͼÖÐÊÇ·ñ´æÔÚ»ØÂ·£¬¿É½èÖúÓÚ£¨£©¡£ A. ¹ã¶ÈÓÅÏÈËÑË÷Ëã·¨ B. ×îСÉú³ÉÊ÷Ëã·¨ C. ×î¶Ì·¾¶Ëã·¨ D. ÍØÆËÅÅÐòËã·¨ 27¡¢ÈκÎÒ»¸öÎÞÏòÁ¬Í¨Í¼µÄ×îСÉú³ÉÊ÷£¨£©ÖÖ¡£ A. Ö»ÓÐÒ»¿Ã B.ÓÐÒ»¿Ã»ò¶à¿Ã C.Ò»¶¨Óжà¿Ã D.¿ÉÄܲ»´æÔÚ 28¡¢ÒÑÖªÒ»ÓÐÏòͼµÄÁÚ½Ó±í´æ´¢½á¹¹ÈçͼËùʾ£¬¸ù¾ÝÓÐÏòͼµÄ¹ã¶ÈÓÅÏȱéÀúËã·¨£¬´Ó¶¥µãv1³ö·¢£¬ËùµÃµ½µÄ¶¥µãÐòÁÐÊÇ£¨£©¡£ 1 2 ^ 3 4 ^ 5 2 4 4 5 3 2 ^ ^ ^ A.v1,v2,v3,v4,v5 B. v1,v3,v2,v4,v5 C. v1,v2,v3,v5,v4 D. v1,v4,v3,v5,v2 29¡¢¶ÔÓÚÒ»¸öÓÐÏòͼ£¬ÈôÒ»¸ö¶¥µãµÄÈë¶ÈΪk1,¡¢³ö¶ÈΪk2£¬Ôò¶ÔÓ¦ÁÚ½Ó±íÖиö¥µãµ¥Á´±í ÖеĽáµãÊýΪ£¨£©¡£ A. k1 B. k2 C. k1+k2 D. k1-k2 30¡¢Ò»¸ö¾ßÓÐ8¸ö¶¥µãµÄÓÐÏòͼÖУ¬ËùÓж¥µãµÄÈë¶ÈÖ®ºÍÓëËùÓж¥µãµÄ³ö¶ÈÖ®ºÍµÄ²îµÈÓÚ£¨£©¡£ A. 16 B. 4 C. 0 D. 2 31¡¢ÎÞÏòͼÖÐÒ»¸ö¶¥µãµÄ¶ÈÊÇָͼÖУ¨£©¡£ A.ͨ¹ý¸Ã¶¥µãµÄ¼òµ¥Â·¾¶Êý B. Óë¸Ã¶¥µãÏàÁڽӵĶ¥µãÊý C. Óë¸Ã¶¥µãÁ¬Í¨µÄ¶¥µãÊý D. ͨ¹ý¸Ã¶¥µãµÄ»ØÂ·Êý ¶þ¡¢Ìî¿ÕÌâ 1¡¢n¸ö¶¥µãµÄÁ¬Í¨Í¼ÖÁÉÙÓбߡ£ ´ð°¸£ºn-1Ìõ 2¡¢Ò»¸öÁ¬Í¨Í¼µÄÉú³ÉÊ÷ÊÇÒ»¸ö£¬Ëü°üº¬Í¼ÖÐËùÓж¥µã£¬µ«Ö»ÓÐ×ãÒÔ¹¹³ÉÒ»¿ÃÊ÷µÄn-1Ìõ±ß¡£ ´ð°¸£º¼«Ð¡Á¬Í¨×Óͼ 3¡¢Ò»¸öͼµÄ±íʾ·¨ÊÇΩһµÄ¡£ ´ð°¸£ºÁÚ½Ó¾ØÕó 4¡¢±éÀúͼµÄ»ù±¾·½·¨ÓÐÉî¶ÈÓÅÏÈËÑË÷ºÍ¹ã¶ÈÓÅÏÈËÑË÷£¬ÆäÖÐÊÇÒ»¸öµÝ¹é¹ý³Ì¡£ ´ð°¸£ºÉî¶ÈÓÅÏÈËÑË÷ 5¡¢ÔÚÎÞÏòͼGµÄÁÚ½Ó¾ØÕóAÖУ¬ÈôA[i][j]µÈÓÚ1£¬ÔòA[j][i]µÈÓÚ¡£ ´ð°¸£º1 6¡¢Åж¨Ò»¸öÓÐÏòͼÊÇ·ñ´æÔÚ»ØÂ·£¬¿ÉÒÔÀûÓᣠ´ð°¸£ºÍØÆËÅÅÐò 7¡¢ÒÑÖªÒ»¸öͼµÄÁÚ½Ó¾ØÕó±íʾ£¬¼ÆËãµÚi¸ö½áµãµÄÈë¶ÈµÄ·½·¨ÊÇ¡£ 8¡¢n¸ö¶¥µãµÄÎÞÏòͼ×î¶àÓбߡ£ 9¡¢ÒÑÖªÒ»¸öͼµÄÁÚ½Ó¾ØÕó±íʾ£¬É¾³ýËùÓдӵÚi¸ö½áµã³ö·¢µÄ±ßµÄ·½·¨ÊÇ¡£ 10¡¢ÈôÒÔÁÚ½Ó¾ØÕó±íʾÓÐÏòͼ£¬ÔòÁÚ½Ó¾ØÕóÉϵÚiÐÐÖзÇÁãÔªËØµÄ¸öÊý¼´Îª¶¥µãviµÄ¡£ Èý¡¢ÅжÏÌâ 1¡¢Í¼µÄÁ¬Í¨·ÖÁ¿ÊÇÎÞÏòͼµÄ¼«Ð¡Á¬Í¨×Óͼ¡£? 2¡¢Ò»¸öͼµÄ¹ã¶ÈÓÅÏÈËÑË÷Ê÷ÊÇΩһµÄ¡£? 3¡¢Í¼µÄÉî¶ÈÓÅÏÈËÑË÷ÐòÁк͹ã¶ÈÓÅÏÈËÑË÷ÐòÁв»ÊÇΩһµÄ¡£? 4¡¢ÁÚ½Ó±íÖ»ÄÜÓÃÓÚ´æ´¢ÓÐÏòͼ£¬¶øÁÚ½Ó¾ØÕóÔò¿É´æ´¢ÓÐÏòͼºÍÎÞÏòͼ¡£? 5¡¢´æ´¢Í¼µÄÁÚ½Ó¾ØÕóÖУ¬ÁÚ½Ó¾ØÕóµÄ´óС²»µ«ÓëͼµÄ¶¥µã¸öÊýÓйأ¬¶øÇÒÓëͼµÄ±ßÊýÒ²Óйء£? 6¡¢AOVÍøÊÇÒ»¸ö´øÈ¨µÄÓÐÏòͼ¡£? 7¡¢´ÓÔ´µãµ½ÖÕµãµÄ×î¶Ì·¾¶ÊÇΨһµÄ¡£? 8¡¢ÁÚ½Ó±íÖ»ÄÜÓÃÓÚ´æ´¢ÓÐÏòͼ£¬¶øÁÚ½Ó¾ØÕóÔò¿É´æ´¢ÓÐÏòͼºÍÎÞÏòͼ¡£? 9¡¢Í¼µÄÉú³ÉÊ÷ÊÇΩһµÄ¡£? ËÄ¡¢³ÌÐò·ÖÎöÌâ 1¡¢Ð´³öÏÂÃæËã·¨µÄ¹¦ÄÜ¡£ typedef struct{ int vexnum,arcnum; char vexs[N]; int arcs[N][N]; }graph; void funtion(int i,graph *g){ int j; printf(\ visited[i]=TRUE; for(j=0;j if((g->arcs[i][j]==1)&&(!visited[j])) function(j,g); } ´ð°¸£ºÊµÏÖͼµÄÉî¶ÈÓÅÏȱéÀúËã·¨ Îå¡¢×ÛºÏÌâ 1¡¢ÒÑ֪ͼGµÄÁÚ½Ó¾ØÕóÈçÏÂËùʾ£º £¨1£©Çó´Ó¶¥µã1³ö·¢µÄ¹ã¶ÈÓÅÏÈËÑË÷ÐòÁУ» £¨2£©¸ù¾ÝprimËã·¨£¬ÇóͼG´Ó¶¥µã1³ö·¢µÄ×îСÉú³ÉÊ÷£¬ÒªÇó±íʾ³öÆäÿһ²½Éú³É¹ý³Ì¡££¨ÓÃͼ»òÕß±íµÄ·½Ê½¾ù¿É£©¡£ ??615????6?5?3??????15?564???? ?5?5??2???36??6???????426???´ð°¸£º(1)¹ã¶ÈÓÅÏȱéÀúÐòÁУº1; 2, 3, 4; 5; 6 (2)×îСÉú³ÉÊ÷£¨primËã·¨£© 11111111125125333434343456426426426 2¡¢ÉèÒ»¸öÎÞÏòͼµÄÁÚ½Ó¾ØÕóÈçÏÂͼËùʾ£º £¨1£©»³ö¸Ãͼ£» £¨2£©»³ö´Ó¶¥µã0³ö·¢µÄÉî¶ÈÓÅÏÈÉú³ÉÊ÷£» ?0?1??1??1?0???00111100?01000??10110?? 01011?01101??00110??01´ð°¸£º(1)ͼÐÎ̬ (2)Éî¶ÈÓÅÏÈËÑË÷Ê÷ 32325454 3¡¢Ð´³öÏÂͼÖÐÈ«²¿¿ÉÄܵÄÍØÆËÅÅÐòÐòÁС£ 152364 ´ð°¸£º1£¬5£¬2£¬3£¬6£¬4 1£¬5£¬6£¬2£¬3£¬4 5£¬1£¬2£¬3£¬6£¬4 5£¬1£¬6£¬2£¬3£¬4 5£¬6£¬1£¬2£¬3£¬4 4¡¢AOEÍøGÈçÏÂËùʾ£¬Ç󹨼ü·¾¶¡££¨ÒªÇó±êÃ÷ÿ¸ö¶¥µãµÄ×îÔç·¢Éúʱ¼äºÍ×î³Ù·¢Éúʱ¼ä£¬²¢»³ö¹Ø¼ü·¾¶£© 3v0v132v3v42v52324v2 ´ð°¸£º(1)×îÔç·¢Éúʱ¼äºÍ×î³Ù·¢Éúʱ¼ä£º (2)¹Ø¼ü·¾¶£º ¶¥µãv0v1v2v3v4v5ve032668vl032668v02v3v2432v13v42v5 5¡¢ÒÑÖªÓÐÏòͼGÈçÏÂËùʾ£¬¸ù¾ÝµÏ½ÜË¹ÌØÀËã·¨Çó¶¥µãv0µ½ÆäËû¶¥µãµÄ×î¶Ì¾àÀë¡££¨¸ø³öÇó½â¹ý³Ì£© v04v24v3951242v17v42 ´Óv0µ½¸÷ÖÕµãµÄdÖµºÍ×î¶Ì·¾¶µÄÇó½â¹ý³Ì ´ð°¸£º ÖÕµã i=1 v1 v2 v3 v4 vj s 12 (v0,v1) 4 (v0,v2) 9 (v0,v3) 5 (v0,v4) v2 {v0,v2} i=2 12 (v0,v1) 8 (v0,v2,v3) 5 (v0,v4) v4 {v0,v4} i=3 7 (v0,v4,v1) 7 (v0,v4,v3) v1 {v0,v4,v1} i=4 7 (v0,v4,v3) v3 {v0,v4,v3} 6¡¢ÒÑ֪ͼGÈçÏÂËùʾ£¬¸ù¾ÝPrimËã·¨£¬¹¹Ôì×îСÉú³ÉÊ÷¡££¨ÒªÇó¸ø³öÉú³É¹ý³Ì£© v08v2242v6v3756v448v17v58v7 ´ð°¸£ºprimËã·¨Çó×îСÉú³ÉÊ÷ÈçÏ£º v0v06v44v57v6v22v06v44v57v6v22v06v44v5v32v67v22v06v44v5v32v67v06v45v7v224v5v327v6v06v45v74v17v56v4 7¡¢ÒÑÖªÓÐÏòͼÈçÏÂËùʾ£¬Çëд³ö¸ÃͼËùÓеÄÍØÆËÐòÁС£ v2v3v1v4v5v8v6v7 ´ð°¸£ºÍØÆËÅÅÐòÈçÏ£º v1, v2, v4, v6, v5, v3, v7, v8 v1, v2, v4, v6, v5, v7, v3, v8 v1, v2, v6, v4, v5, v3, v7, v8 v1, v2, v6, v4, v5, v7, v3, v8 v1, v6, v2, v4, v5, v3, v7, v8 v1, v6, v2, v4, v5, v7, v3, v8 8¡¢ÈçÏÂͼËùʾµÄAOEÍø£¬Çó£º £¨1£©ÇóʼþµÄ×îÔ翪ʼʱ¼äveºÍ×î³Ù¿ªÊ¼Ê±¼ävl£» ʼþ 1 2 3 4 5 6 7 8 9 Ve Vl V2a1a416a24a35V4a62V6V3a94a51V5a79a87V8a114V9»ãµã V7 £¨2£©Çó³ö¹Ø¼ü·¾¶£» a102V1Ô´µã ´ð°¸£º(1)ÇóveºÍvl (2)¹Ø¼ü·¾¶ ʼþvevl100*266*346458577*671071616*81414*91818*v16v21v57v849v72v9ÈçÏÂËùʾµÄÓÐÏòͼ£¬»Ø´ðÏÂÃæÎÊÌ⣺ v1v2 £¨1£©¸ÃͼÊÇÇ¿Á¬Í¨µÄÂð£¿Èô²»ÊÇ£¬¸ø³öÇ¿Á¬Í¨·ÖÁ¿¡£ £¨2£©Çë¸ø³öͼµÄÁÚ½Ó¾ØÕóºÍÁÚ½Ó±í±íʾ¡£ ´ð°¸£º(1) ÊÇÇ¿Á¬Í¨Í¼ (2) ÁÚ½Ó¾ØÕóºÍÁÚ½Ó±íΪ£º 0010100001011000v1v2v3v4v2v3v1v3v4v4v3 ??112610??1?89????9¡¢ÒÑ֪ͼGµÄÁÚ½Ó¾ØÕóA=?128??2?£¬ÊÔ»³öËüËù±íʾµÄͼG£¬²¢¸ù¾ÝPrimËã ???69??4???10?24???·¨Çó³öͼµÄµÄ×îСÉú³ÉÊ÷£¨¸ø³öÉú³É¹ý³Ì£©¡£ ´ð°¸£º (1)ͼÐÎ̬£º (2)primËã·¨Çó×îСÉú³ÉÊ÷£º v112102v518v34v2v11v2v118v2v118v324v29v4v118v3v22v5v3v5v4 10¡¢ÈçÏÂͼËùʾµÄAOVÍø£¬Ð´³öÆäÖÐÈýÖÖÍØÆËÅÅÐòÐòÁС£ v0v2v1v3v4v5v6v7 11¡¢ÒÑ֪ͼGÈçÏ£¬¸ù¾Ý¿Ë³˹¿¨¶ûËã·¨ÇóͼGµÄÒ»¿Ã×îСÉú³ÉÊ÷¡££¨ÒªÇó¸ø³ö¹¹Ôì¹ý³Ì£© ´ð°¸£ºkruskalËã·¨µÄ×îСÉú³ÉÊ÷ B2B2D3B2D3B2A4D3FFKF3KF3CKHHB2A4D3B25A4D3B25A45D3F3C4KF3C4KF3C4KHEHEHE 12¡¢ÒÑ֪ͼGÈçÏÂËùʾ£¬Çó´Ó¶¥µãaµ½ÆäÓà¸÷¶¥µãµÄ×î¶Ì·¾¶¡££¨¸ø³öÇó½â¹ý³Ì£© b 6 a 3 c ´ð°¸£º ÖÕµã b c d e f vj S 6 (a,b) 3 (a,c) ? ? ? c {a,c} 2 5 d 3 2 5 ×î¶Ì·¾¶Çó½â¹ý³Ì 5 (a,c,b) 6 (a,c,d) 7 (a,c,e) ? b {a,c,b} 6 (a,c,d) 7 (a,c,e) ? d {a,c,d} 7 (a,c,e) 9 (a,c,d,f) e {a,c,e} 9 (a,c,d,f) f {a,c,d,f} 3 f 4 e µÚ¾ÅÕ ²éÕÒ Ò»¡¢Ñ¡ÔñÌâ 1¡¢ÒÑÖªÒ»¸öÓÐÐò±íΪ£¨11£¬22£¬33£¬44£¬55£¬66£¬77£¬88£¬99£©£¬ÔòÕÛ°ë²éÕÒ55ÐèÒª±È½Ï£¨ A £©´Î¡£ A. 1 B. 2 C. 3 D. 4 2¡¢ÓÐÒ»×鹨¼ü×ÖÐòÁÐ{13,16,6,34,32,98,73,1,27}£¬¹þÏ£±íµÄ±í³¤Îª13£¬¹þÏ£º¯ÊýΪH(key)=key MOD 13,³åÍ»½â¾öµÄ°ì·¨ÎªÁ´µØÖ··¨£¬Çë¹¹Ôì¹þÏ£±í£¨ÓÃͼ±íʾ£©¡£ 3¡¢½â¾ö¹þÏ£³åÍ»µÄÖ÷Òª·½·¨ÓУ¨£©¡£ A. Êý×Ö·ÖÎö·¨¡¢³ýÓà·¨¡¢Æ½·½È¡Öз¨ B. Êý×Ö·ÖÎö·¨¡¢³ýÓà·¨¡¢ÏßÐÔ̽²â·¨ C. Êý×Ö·ÖÎö·¨¡¢ÏßÐÔ̽²â·¨¡¢ÔÙ¹þÏ£·¨ D. ÏßÐÔ̽²â·¨¡¢ÔÙ¹þÏ£·¨¡¢Á´µØÖ··¨ 4¡¢ÔÚÒ»¿ÃÉî¶ÈΪhµÄ¾ßÓÐn¸öÔªËØµÄ¶þ²æÅÅÐòÊ÷ÖУ¬²éÕÒËùÓÐÔªËØµÄ×²éÕÒ³¤¶ÈΪ£¨£©¡£ A. n B. log2n C. (h+1)/2 D. h 5¡¢ÒÑÖª±í³¤Îª25µÄ¹þÏ£±í£¬ÓóýÁôÈ¡Óà·¨£¬°´¹«Ê½H(key)=key MOD p ½¨Á¢¹þÏ£±í£¬ÔòpӦȡ£¨£©ÎªÒË¡£ A. 23 B.24 C. 25 D. 26 6¡¢Éè¹þÏ£±í³¤m=14,¹þÏ£º¯ÊýH(key)=key MOD 11¡£±íÖÐÒÑÓÐ4¸ö½áµã£º addr(15)=4,addr(38)=5,addr(61)=6,addr(84)=7 ÆäÓàµØÖ·Îª¿Õ£¬ÈçÓöþ´Î̽²âÔÙÉ¢Áд¦Àí³åÍ»£¬Ôò¹Ø¼ü×ÖΪ49µÄµØÖ·Îª£¨ A £©¡£ A.8 B. 3 C. 5 D. 9 7¡¢ÔÚÉ¢ÁвéÕÒÖУ¬Æ½¾ù²éÕÒ³¤¶ÈÖ÷ÒªÓ루 C£©Óйء£ A. É¢ÁÐ±í³¤¶È B.É¢ÁÐÔªËØ¸öÊý C. ×°ÌîÒò×Ó D. ´¦Àí³åÍ»·½ ·¨ 8¡¢¸ù¾ÝÒ»×é¼Ç¼£¨56£¬42£¬50£¬64£¬48£©ÒÀ´Î²åÈë½áµãÉú³ÉÒ»¿ÃAVLÊ÷£¬µ±²åÈ뵽ֵΪµÄ½áµãʱÐèÒª½øÐÐÐýתµ÷Õû¡£ 9¡¢m½×B-Ê÷ÖеÄmÊÇÖ¸£¨£©¡£ A. ÿ¸ö½áµãÖÁÉÙ¾ßÓÐm¿Ã×ÓÊ÷ B. ÿ¸ö½áµã×î¶à¾ßÓÐm¿Ã×ÓÊ÷ C. ·ÖÖ§½áµãÖаüº¬µÄ¹Ø¼ü×ֵĸöÊý D. m½×B-Ê÷µÄÉî¶È 10¡¢Ò»¸ö´ýÉ¢ÁеÄÏßÐÔ±íΪk={18,25,63,50,42,32,9}£¬É¢Áк¯ÊýΪH(k)=k MOD 9£¬Óë18·¢Éú³åÍ»µÄÔªËØÓУ¨£©¸ö¡£ A. 1 B. 2 C. 3 D. 4 11¡¢ÔÚ¶Ô²éÕÒ±íµÄ²éÕÒ¹ý³ÌÖУ¬Èô±»²éÕÒµÄÊý¾ÝÔªËØ²»´æÔÚ£¬Ôò°Ñ¸ÃÊý¾ÝÔªËØ²åµ½¼¯ºÏÖУ¬ÕâÖÖ·½Ê½Ö÷ÒªÊʺÏÓÚ£¨£©¡£ A.¾²Ì¬²éÕÒ±í B. ¶¯Ì¬²éÕÒ±í C. ¾²Ì¬²éÕÒ±íºÍ¶¯Ì¬²éÕÒ±í D. Á½ÖÖ±í¶¼²»ÊÊºÏ 12¡¢ÓÐÒ»¸öÓÐÐò±íΪ{1,3,9,12,32,41,45,62,75,77,82,95,100},µ±ÕÛ°ë²éÕÒֵΪ82µÄ½áµãʱ£¬£¨ B £©´Î±È½Ïºó²éÕҳɹ¦¡£ A. 1 B. 4 C. 2 D. 8 13¡¢ÔÚ¸÷ÖÖ²éÕÒ·½·¨ÖУ¬Æ½¾ù²éÕҳе£Óë½áµã¸öÊýnÎ޹صIJéÕÒ·½·¨ÊÇ£¨ C £©¡£ A. ˳Ðò²éÕÒ B. ÕÛ°ë²éÕÒ C. ¹þÏ£²éÕÒ D. ·Ö¿é²éÕÒ 14¡¢ÏÂÁжþ²æÊ÷ÖУ¬²»Æ½ºâµÄ¶þ²æÊ÷ÊÇ£¨C£©¡£ £® 15¡¢¶ÔÒ»¿Ã¶þ²æÅÅÐòÊ÷°´£¨ B£©±éÀú£¬¿ÉµÃµ½½áµãÖµ´ÓСµ½´óµÄÅÅÁÐÐòÁС£ A. ÏÈÐò B.ÖÐÐò C.ºóÐò D.²ã´Î 16¡¢½â¾öÉ¢Áз¨ÖгöÏֵijåÍ»ÎÊÌâ³£²ÉÓõķ½·¨ÊÇ£¨D £©¡£ A. Êý×Ö·ÖÎö·¨¡¢³ýÓà·¨¡¢Æ½·½È¡Öз¨ B.Êý×Ö·ÖÎö·¨¡¢³ýÓà·¨¡¢ÏßÐÔ̽²â·¨ C. Êý×Ö·ÖÎö·¨¡¢ÏßÐÔ̽²â·¨¡¢¶àÖØÉ¢Áз¨ D. ÏßÐÔ̽²â·¨¡¢¶àÖØÉ¢Áз¨¡¢Á´µØÖ··¨ 17¡¢¶ÔÏßÐÔ±í½øÐÐÕÛ°ë²éÕÒʱ£¬ÒªÇóÏßÐÔ±í±ØÐ루 C £©¡£ A. ÒÔ˳Ðò·½Ê½´æ´¢ B. ÒÔÁ´½Ó·½Ê½´æ´¢ C. ÒÔ˳Ðò·½Ê½´æ´¢£¬ÇÒ½áµã°´¹Ø¼ü×ÖÓÐÐòÅÅÐò D. ÒÔÁ´½Ó·½Ê½´æ´¢£¬ÇÒ½áµã°´¹Ø¼ü×ÖÓÐÐòÅÅÐò ¶þ¡¢Ìî¿ÕÌâ 1¡¢ÔÚÉ¢Áк¯ÊýH(key)=key£¥pÖУ¬pӦȡ¡£ 2¡¢ÒÑÖªÓÐÐò±íΪ£¨12£¬18£¬24£¬35£¬47£¬50£¬62£¬83£¬90£¬115£¬134£©£¬µ±ÓÃÕÛ°ë²éÕÒ90ʱ£¬Ðè½øÐÐ 2 ´Î²éÕÒ¿ÉÈ·¶¨³É¹¦¡£ 3¡¢¾ßÓÐÏàͬº¯ÊýÖµµÄ¹Ø¼ü×Ö¶Ô¹þÏ£º¯ÊýÀ´Ëµ³ÆÎª¡£ 4¡¢ÔÚÒ»¿Ã¶þ²æÅÅÐòÊ÷ÉÏʵʩ±éÀúºó£¬Æä¹Ø¼ü×ÖÐòÁÐÊÇÒ»¸öÓÐÐò±í¡£ 5¡¢ÔÚÉ¢Áд洢ÖУ¬×°ÌîÒò×Ó¦ÁµÄÖµÔ½´ó£¬Ôò´æÈ¡ÔªËØÊ±·¢Éú³åÍ»µÄ¿ÉÄÜÐÔ¾ÍÔ½´ó£»¦ÁÖµÔ½ С£¬Ôò´æÈ¡ÔªËØ·¢Éú³åÍ»µÄ¿ÉÄÜÐÔ¾ÍԽС¡£ Èý¡¢ÅжÏÌâ £¨¡Á£©1¡¢ÕÛ°ë²éÕÒÖ»ÊÊÓÃÓÚÓÐÐò±í£¬°üÀ¨ÓÐÐòµÄ˳Ðò±íºÍÁ´±í¡£ £¨£©2¡¢¶þ²æÅÅÐòÊ÷µÄÈÎÒâÒ»¿Ã×ÓÊ÷ÖУ¬¹Ø¼ü×Ö×îСµÄ½áµã±ØÎÞ×óº¢×Ó£¬¹Ø¼ü×Ö×î´óµÄ½áµã±ØÎÞÓÒº¢×Ó¡£ £¨£©3¡¢¹þÏ£±íµÄ²éÕÒЧÂÊÖ÷Ҫȡ¾öÓÚ¹þÏ£±íÔì±íʱËùѡȡµÄ¹þÏ£º¯ÊýºÍ´¦Àí³åÍ»µÄ·½·¨¡£ £¨£©4¡¢Æ½ºâ¶þ²æÊ÷ÊÇÖ¸×óÓÒ×ÓÊ÷µÄ¸ß¶È²îµÄ¾ø¶ÔÖµ²»´óÓÚ1µÄ¶þ²æÊ÷¡£ £¨¡Ì£©5¡¢AVLÊÇÒ»¿Ã¶þ²æÊ÷£¬ÆäÊ÷ÉÏÈÎÒ»½áµãµÄƽºâÒò×ӵľø¶ÔÖµ²»´óÓÚ1¡£ ËÄ¡¢×ÛºÏÌâ 1¡¢Ñ¡È¡¹þÏ£º¯ÊýH£¨k£©=£¨k£©MOD 11¡£Óöþ´Î̽²âÔÙÉ¢Áд¦Àí³åÍ»£¬ÊÔÔÚ0-10µÄÉ¢ÁеØÖ·¿Õ¼äÖжԹؼü×ÖÐòÁУ¨22,41,53,46,30,13,01,67£©Ôì¹þÏ£±í£¬²¢ÇóµÈ¸ÅÂÊÇé¿öϲéÕҳɹ¦Ê±µÄƽ¾ù²éÕÒ³¤¶È¡£ ´ð°¸£º(1)±íÐÎ̬£º 022110112461313245673038411953110 (2)ASL£ºASL(7)=(1*5+2*1+3*1)/7=(5+2+3)/7=10/7 2¡¢Éè¹þÏ£±íHT±í³¤mΪ13£¬¹þÏ£º¯ÊýΪH(k)=k MOD m£¬¸ø¶¨µÄ¹Ø¼üÖµÐòÁÐΪ{19,14,23,10,68,20,84,27,55,11}¡£ÊÔÇó³öÓÃÏßÐÔ̽²â·¨½â¾ö³åͻʱËù¹¹ÔìµÄ¹þÏ£±í£¬²¢Çó³öÔڵȸÅÂʵÄÇé¿öϲéÕҳɹ¦µÄƽ¾ù²éÕÒ³¤¶ÈASL¡£ ´ð°¸£º(1)±íÐÎ̬£º 0114122723681455256191720188439102311110212112 (2)ƽ¾ù²éÕÒ³¤¶È£ºASL(10)=(1*5+2*4+3*1)/10=1.6 3¡¢ÉèÉ¢ÁбíÈÝÁ¿Îª7£¨É¢ÁеØÖ·¿Õ¼ä0..6£©£¬¸ø¶¨±í£¨30£¬36£¬47£¬52£¬34£©,É¢Áк¯ÊýH£¨K£©=K mod 6£¬²ÉÓÃÏßÐÔ̽²â·¨½â¾ö³åÍ»£¬ÒªÇó£º £¨1£©¹¹ÔìÉ¢ÁÐ±í£» £¨2£©Çó²éÕÒÊý34ÐèÒª±È½ÏµÄ´ÎÊý¡£ ´ð°¸£º(1)±íÐÎ̬£º 0301126223452154716343 (2)²éÕÒ34 µÄ±È½Ï´ÎÊý£º3 4¡¢ÒÑÖªÏÂÃæ¶þ²æÅÅÐòÊ÷µÄ¸÷½áµãµÄÖµÒÀ´ÎΪ1£9£¬Çë±ê³ö¸÷½áµãµÄÖµ¡£ ´ð°¸£º 5196162738 5¡¢ÈôÒÀ´ÎÊäÈëÐòÁÐ{62,68,30,61,25,14,53,47,90,84}ÖеÄÔªËØ£¬Éú³ÉÒ»¿Ã¶þ²æÅÅÐòÊ÷¡£»³öÉú³ÉºóµÄ¶þ²æÅÅÐòÊ÷£¨²»Ð軳öÉú³É¹ý³Ì£©¡£ 6¡¢ÉèÓÐÒ»×鹨¼ü×Ö{19,1,23,14,55,20,84,27,68,11,10,77},²ÉÓùþÏ£º¯Êý H(key)=key MOD 13,²ÉÓÿª·ÅµØÖ··¨µÄ¶þ´Î̽²âÔÙÉ¢Áз½·¨½â¾ö³åÍ»£¬ÊÔÔÚ0£18µÄÉ¢ÁпռäÖжԹؼü×ÖÐòÁй¹Ôì¹þÏ£±í£¬»³ö¹þÏ£±í£¬²¢ÇóÆä²éÕҳɹ¦Ê±µÄƽ¾ù²éÕÒ³¤¶È¡£ 7¡¢ÒÑÖª¹Ø¼ü×ÖÐòÁÐ{11,2,13,26,5,18,4,9}£¬Éè¹þÏ£±í±í³¤Îª16£¬¹þÏ£º¯ÊýH(key)=key MOD 13£¬´¦Àí³åÍ»µÄ·½·¨ÎªÏßÐÔ̽²â·¨£¬Çë¸ø³ö¹þÏ£±í£¬²¢¼ÆËãÔڵȸÅÂʵÄÌõ¼þÏÂµÄÆ½¾ù²éÕÒ³¤¶È¡£ 8¡¢ÉèÉ¢ÁбíµÄ³¤¶ÈΪm=13£¬É¢Áк¯ÊýΪH(k)=k MOD m£¬¸ø¶¨µÄ¹Ø¼üÂëÐòÁÐΪ19£¬14£¬23£¬1£¬68£¬20£¬84£¬27£¬55£¬11£¬13£¬7£¬ÊÔд³öÓÃÏßÐÔ̽²é·¨½â¾ö³åͻʱËù¹¹ÔìµÄÉ¢ÁÐ±í¡£ ´ð°¸£º±íÐÎ̬£º 01311141212368142745553619172018843973102311111112 9¡¢ÒÀ´Î¶ÁÈë¸ø¶¨µÄÕûÊýÐòÁÐ{7,16,4,8,20,9,6,18,5}£¬¹¹ÔìÒ»¿Ã¶þ²æÅÅÐòÊ÷,²¢¼ÆËãÔڵȸÅÂÊÇé¿öϸöþ²æÅÅÐòÊ÷µÄƽ¾ù²éÕÒ³¤¶ÈASL¡££¨ÒªÇó¸ø³ö¹¹Ôì¹ý³Ì£© 10¡¢ÉèÓÐÒ»×鹨¼ü×Ö£¨19£¬1£¬23£¬14£¬55£¬20£¬84£¬27£¬68£¬11£¬10£¬77£©£¬²ÉÓùþÏ£º¯ÊýH(key)=key£¬²ÉÓöþ´Î̽²âÔÙÉ¢Áеķ½·¨½â¾ö³åÍ»£¬ÊÔÔÚ0-18µÄÉ¢ÁеØÖ·¿Õ¼äÖжԸùؼü×ÖÐòÁй¹Ôì¹þÏ£±í¡£ ´ð°¸£º 027311121423551468258436191720189103102311111112771131415161718 µÚʮՠÄÚ²¿ÅÅÐò Ò»¡¢Ñ¡ÔñÌâ 1¡¢ÈôÐèÒªÔÚO(nlog2n)µÄʱ¼äÄÚÍê³É¶ÔÊý×éµÄÅÅÐò£¬ÇÒÒªÇóÅÅÐòÊÇÎȶ¨µÄ£¬Ôò¿ÉÑ¡ÔñµÄÅÅÐò·½·¨ÊÇ£¨£©¡£ A. ¿ìËÙÅÅÐò B. ¶ÑÅÅÐò C. ¹é²¢ÅÅÐò D. Ö±½Ó²åÈëÅÅÐò 2¡¢ÏÂÁÐÅÅÐò·½·¨ÖУ¨£©·½·¨ÊDz»Îȶ¨µÄ¡£ A. ðÅÝÅÅÐò B.Ñ¡ÔñÅÅÐò C. ¶ÑÅÅÐò D. Ö±½Ó²åÈëÅÅÐò 3¡¢Ò»¸öÐòÁÐÖÐÓÐ10000¸öÔªËØ£¬ÈôÖ»ÏëµÃµ½ÆäÖÐǰ10¸ö×îÐ¡ÔªËØ£¬Ôò×îºÃ²ÉÓ㨣©·½·¨¡£ A. ¿ìËÙÅÅÐò B.¶ÑÅÅÐò C.²åÈëÅÅÐò D.¹é²¢ÅÅÐò 4¡¢Ò»×é´ýÅÅÐòÐòÁÐΪ£¨46,79,56,38,40,84£©£¬ÔòÀûÓöÑÅÅÐòµÄ·½·¨½¨Á¢µÄ³õʼ¶ÑΪ£¨£©¡£ A. 79,46,56,38,40,80 B. 84,79,56,38,40,46 C. 84,79,56,46,40,38 D. 84,56,79,40,46,38 5¡¢¿ìËÙÅÅÐò·½·¨ÔÚ£¨£©Çé¿öÏÂ×î²»ÀûÓÚ·¢»ÓÆä³¤´¦¡£ A. ÒªÅÅÐòµÄÊý¾ÝÁ¿Ì«´ó B.ÒªÅÅÐòµÄÊý¾ÝÖÐÓжà¸öÏàֵͬ C. ÒªÅÅÐòµÄÊý¾ÝÒÑ»ù±¾ÓÐÐò D. ÒªÅÅÐòµÄÊý¾Ý¸öÊýÎªÆæÊý 6¡¢ÅÅÐòʱɨÃè´ýÅÅÐò¼Ç¼ÐòÁУ¬Ë³´Î±È½ÏÏàÁÚµÄÁ½¸öÔªËØµÄ´óС£¬ÄæÐòʱ¾Í½»»»Î»Öã¬ÕâÊÇ£¨£©ÅÅÐòµÄ»ù±¾Ë¼Ïë¡£ A. ¶ÑÅÅÐò B. Ö±½Ó²åÈëÅÅÐò C. ¿ìËÙÅÅÐò D. ðÅÝÅÅÐò 7¡¢ÔÚÈκÎÇé¿öÏ£¬Ê±¼ä¸´ÔӶȾùΪO(nlogn)µÄ²»Îȶ¨µÄÅÅÐò·½·¨ÊÇ£¨£©¡£ A.Ö±½Ó²åÈë B. ¿ìËÙÅÅÐò C. ¶ÑÅÅÐò D. ¹é²¢ÅÅÐò 8¡¢Èç¹û½«ËùÓÐÖйúÈ˰´ÕÕÉúÈÕÀ´ÅÅÐò£¬ÔòʹÓ㨣©Ëã·¨×î¿ì¡£ A. ¹é²¢ÅÅÐò B.Ï£¶ûÅÅÐò C.¿ìËÙÅÅÐò D.»ùÊýÅÅÐò 9¡¢ÔÚ¶Ôn¸öÔªËØµÄÐòÁнøÐÐÅÅÐòʱ£¬¶ÑÅÅÐòËùÐèÒªµÄ¸½¼Ó´æ´¢¿Õ¼äÊÇ£¨£©¡£ A. O(log2n) B. O(1) C. O(n) D. O(nlog2n) 10¡¢ÅÅÐò·½·¨ÖУ¬´ÓδÅÅÐòÐòÁÐÖÐÒÀ´ÎÈ¡³öÔªËØÓëÒÑÅÅÐòÐòÁÐÖеÄÔªËØ½øÐбȽϣ¬½«Æä·ÅÈëÒÑÅÅÐòÐòÁеÄÕýȷλÖÃÉϵķ½·¨£¬³ÆÎª£¨£©¡£ A. Ï£¶ûÅÅÐò B. ðÅÝÅÅÐò C. ²åÈëÅÅÐò D.Ñ¡ÔñÅÅÐò 11¡¢Ò»×é¼Ç¼µÄµÄÐòÁÐ䣨46£¬79£¬56£¬38£¬40£¬84£©£¬ÔòÀûÓöÑÅÅÐòµÄ·½·¨½¨Á¢µÄ³õʼ¶ÑΪ£¨£©¡£ A. 79£¬46£¬56£¬38£¬40£¬80 B. 84£¬79£¬56£¬38£¬40£¬46 C. 84£¬79£¬56£¬46£¬40£¬38 D. 84£¬56£¬79£¬40£¬46£¬38 12¡¢ÓÃijÖÖÅÅÐò·½·¨¶ÔÏßÐÔ±í£¨ 25£¬84£¬21£¬47£¬15£¬27£¬68£¬35£¬20£©½øÐÐÅÅÐòʱ£¬ÔªËØÐòÁеı仯Çé¿öÈçÏ£º ¢Å 25£¬84£¬21£¬47£¬15£¬27£¬68£¬35£¬20 ¢Æ 20£¬15£¬21£¬25£¬47£¬27£¬68£¬35£¬84 ¢Ç 15£¬20£¬21£¬25£¬35£¬27£¬47£¬68£¬84 ¢È 15£¬20£¬21£¬25£¬27£¬35£¬47£¬68£¬84 ÔòËù²ÉÓõÄÅÅÐò·½·¨ÊÇ£¨£©¡£ A. Ñ¡ÔñÅÅÐò B. Ï£¶ûÅÅÐò C. ¹é²¢ÅÅÐò D. ¿ìËÙÅÅÐò 13¡¢ÉèÓÐ1024¸öÎÞÐòµÄÔªËØ£¬Ï£ÍûÓÃ×î¿ìµÄËÙ¶ÈÌôÑ¡³öÆäÖÐǰ5¸ö×î´óµÄÔªËØ£¬×îºÃÑ¡Ó㨣©¡£ A.ðÅÝÅÅÐò B. Ñ¡ÔñÅÅÐò C.¿ìËÙÅÅÐò D.¶ÑÅÅÐò 14¡¢ÏÂÁÐÅÅÐò·½·¨ÖУ¬Æ½¾ùʱ¼äÐÔÄÜΪO(nlogn)ÇÒ¿Õ¼äÐÔÄÜ×îºÃµÄÊÇ£¨£©¡£ A. ¿ìËÙÅÅÐò B.¶ÑÅÅÐò C. ¹é²¢ÅÅÐò D. »ùÊýÅÅÐò 15¡¢Ï£¶ûÅÅÐòµÄÔöÁ¿ÐòÁбØÐëÊÇ£¨£©¡£ A.µÝÔöµÄ B. µÝ¼õµÄ C.Ëæ»úµÄ D.·ÇµÝ¼õµÄ ¶þ¡¢Ìî¿ÕÌâ 1¡¢ÔÚ²åÈëºÍÑ¡ÔñÅÅÐòÖУ¬Èô³õʼÊý¾Ý»ù±¾ÕýÐò£¬ÔòÑ¡Óã¬Èô³õʼÊý¾Ý»ù±¾·´Ðò£¬ÔòÑ¡Óᣠ´ð°¸£ºµÝÔöÅÅÁÐ µÝ¼õÅÅÁÐ 2¡¢ÔÚ²åÈëÅÅÐò¡¢Ï£¶ûÅÅÐò¡¢Ñ¡ÔñÅÅÐò¡¢¿ìËÙÅÅÐò¡¢¶ÑÅÅÐò¡¢¹é²¢ÅÅÐòºÍ»ùÊýÅÅÐòÖУ¬ÅÅÐòÊDz»Îȶ¨µÄÓС£ Èý¡¢ÅжÏÌâ 1¡¢Ö±½ÓÑ¡ÔñÅÅÐòÊÇÒ»ÖÖÎȶ¨µÄÅÅÐò·½·¨¡£? 2¡¢¿ìËÙÅÅÐòÔÚËùÓÐÅÅÐò·½·¨ÖÐ×î¿ì£¬¶øÇÒËùÐ踽¼Ó¿Õ¼äÒ²×îÉÙ¡£? 3¡¢Ö±½Ó²åÈëÅÅÐòÊDz»Îȶ¨µÄÅÅÐò·½·¨¡£? 4¡¢Ñ¡ÔñÅÅÐòÊÇÒ»ÖÖ²»Îȶ¨µÄÅÅÐò·½·¨¡£ ËÄ¡¢³ÌÐò·ÖÎöÌâ Îå¡¢×ÛºÏÌâ 1¡¢Ð´³öÓÃÖ±½Ó²åÈëÅÅÐò½«¹Ø¼ü×ÖÐòÁÐ{54,23,89,48,64,50,25,90,34}ÅÅÐò¹ý³ÌµÄÿһÌ˽á¹û¡£ ´ð°¸£º³õʼ£º 54£¬23£¬89£¬48£¬64£¬50£¬25£¬90£¬34 1£º£¨23£¬54£©£¬89£¬48£¬64£¬50£¬25£¬90£¬34 2£º£¨23£¬54£¬89£©£¬48£¬64£¬50£¬25£¬90£¬34 3£º£¨23£¬48£¬54£¬89£©£¬64£¬50£¬25£¬90£¬34 4£º£¨23£¬48£¬54£¬64£¬89£©£¬50£¬25£¬90£¬34 5£º£¨23£¬48£¬50£¬54£¬64£¬89£©£¬25£¬90£¬34 6£º£¨23£¬25£¬48£¬50£¬54£¬64£¬89£©£¬90£¬34 7£º£¨23£¬25£¬48£¬50£¬54£¬64£¬89£¬90£©£¬34 8£º£¨23£¬25£¬48£¬50£¬54£¬64£¬89£¬90£¬34£© 2¡¢Éè´ýÅÅÐòÐòÁÐΪ{10,18,4,3,6,12,1,9,15,8}Çëд³öÏ£¶ûÅÅÐòÿһÌ˵Ľá¹û¡£ÔöÁ¿ÐòÁÐΪ5£¬3£¬2£¬1¡£ ´ð°¸£º³õʼ£º 10£¬18£¬4£¬3£¬6£¬12£¬1£¬9£¬15£¬8 d=5£º 10£¬1£¬4£¬3£¬6£¬12£¬18£¬9£¬15£¬8 d=3£º 3£¬1£¬4£¬8£¬6£¬12£¬10£¬9£¬15£¬18 d=2£º 3£¬1£¬4£¬8£¬6£¬9£¬10£¬12£¬15£¬18 d=1£º 1£¬3£¬4£¬6£¬8£¬9£¬10£¬12£¬15£¬18 3¡¢ÒÑÖª¹Ø¼ü×ÖÐòÁÐ{418£¬347£¬289£¬110£¬505£¬333£¬984£¬693£¬177}£¬°´µÝÔöÅÅÐò£¬Çó³õʼ¶Ñ£¨»³ö³õʼ¶ÑµÄ״̬£©¡£ ´ð°¸£º418£¬347£¬289£¬110£¬505£¬333£¬984£¬693£¬177 418984347289693418110505333984347505333289693177110177 4¡¢ÓÐÒ»¹Ø¼ü×ÖÐòÁУ¨265£¬301£¬751£¬129£¬937£¬863£¬742£¬694£¬076£¬438£©£¬Ð´³öÏ£¶ûÅÅÐòµÄÿÌËÅÅÐò½á¹û¡££¨È¡ÔöÁ¿Îª5£¬3£¬1£© ´ð°¸£º ³õʼ£º 265£¬301£¬751£¬129£¬937£¬863£¬742£¬694£¬076£¬438 d=5£º 265£¬301£¬694£¬076£¬438£¬863£¬742£¬751£¬129£¬937 d=3£º 076£¬301£¬129£¬265£¬438£¬694£¬742£¬751£¬863£¬937 d=1£º 076£¬129£¬265£¬301£¬438£¬694£¬742£¬751£¬863£¬937 5¡¢¶ÔÓÚÖ±½Ó²åÈëÅÅÐò£¬Ï£¶ûÅÅÐò£¬Ã°ÅÝÅÅÐò£¬¿ìËÙÅÅÐò£¬Ö±½ÓÑ¡ÔñÅÅÐò£¬¶ÑÅÅÐòºÍ¹é²¢ÅÅÐòµÈÅÅÐò·½·¨£¬·Ö±ðд³ö£º £¨1£©Æ½¾ùʱ¼ä¸´ÔӶȵÍÓÚO£¨n2£©µÄÅÅÐò·½·¨£» £¨2£©ËùÐ踨Öú¿Õ¼ä×î¶àµÄÅÅÐò·½·¨£» ´ð°¸£º(1) Ï£¶û¡¢¿ìËÙ¡¢¶Ñ¡¢¹é²¢ (2) ¹é²¢ 6¡¢¶Ô¹Ø¼ü×ÓÐòÁУ¨72£¬87£¬61£¬23£¬94£¬16£¬05£¬58£©½øÐжÑÅÅÐò£¬Ê¹Ö®°´¹Ø¼ü×ֵݼõ´ÎÐòÅÅÁУ¨×îС¶Ñ£©£¬Çëд³öÅÅÐò¹ý³ÌÖеõ½µÄ³õʼ¶ÑºÍǰÈýÌ˵ÄÐòÁÐ״̬¡£ ´ð°¸£º ³õʼ¶Ñ7287235994166105875923947205166105592394728716610559239472µÚ1ÌË166187µÚ2ÌË872359059472611605875994722361160587599423726116µÚ3ÌË5972870594236116