΢»ý·ÖÁ·Ï°²á[µÚ°ËÕÂ] ¶àÔªº¯Êý΢·Öѧ
ϰÌâ 8-2Æ«µ¼Êý¼°ÆäÔÚ¾¼Ã·ÖÎöÖеÄÓ¦ÓÃ
1.Ìî¿ÕÌâ
£¨1£©Éèz?lntanxy£¬Ôò?z?x?________,?z?y?__________; £¨2£©Éèz?exy(x?y)£¬Ôò
?z??x?________,z?y?__________; £¨3£©Éèu?xy?uz£¬Ôò?x?________,?u?u?y?__________,?z?________;
£¨4£©Éèz?axcanty?2?2zx£¬Ôòz?x2?_________,?_______?2z?y2__,?x?y?________ £¨5£©Éèu?(xz?2uy)£¬Ôò?x?y?________; £¨6£©Éè
f(x,y)ÔÚµã
(a,b)´¦µÄÆ«µ¼Êý´æÔÚ£¬limf(a?x,b)?f(a?x,b)x?0x?_________
2.ÇóÏÂÁк¯ÊýµÄÆ«µ¼Êý (1)z?(1?xy)y
33
Ôò
°à¼¶£º ÐÕÃû£º ѧºÅ£º
(2)u?arcsixn?(y)z
3.Éèz?y£¬Çóº¯ÊýÔÚ£¨1£¬1£©µãµÄ¶þ½×Æ«µ¼Êý
34
x΢»ý·ÖÁ·Ï°²á[µÚ°ËÕÂ] ¶àÔªº¯Êý΢·Öѧ
?3z?3z 4.Éèz?xln(xy)£¬Çó2ºÍ 2?x?y?x?y
5. z?e
35
11?(?)xy£¬ÊÔ»¯¼òx2?z?z?y2 ?x?y°à¼¶£º ÐÕÃû£º ѧºÅ£º
?3xy,(x,y)?(0,0)?22f(x,y)??x?y 6.ÊÔÖ¤º¯Êý Ôڵ㣨0£¬0£©´¦µÄÆ«µ¼Êý´æÔÚ£¬µ«²»?0, (x,y)?(0,0)?Á¬Ðø.
36