Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
(2)ÇóÖ±ÏßAC1ÓëÆ½ÃæABB1Ëù³ÉµÄ½ÇµÄÕýÏÒÖµ.
¡¾½âÎö¡¿½â·¨Ò»(1)Ö¤Ã÷:ÓÉAB=2,AA1=4,BB1=2,AA1¡ÍAB,BB1¡ÍAB,µÃAB1=A1B1=2ËùÒÔA1
,
+A=A,¹ÊAB1¡ÍA1B1.
,ÓÉAB=BC=2,¡ÏABC=120¡ã,µÃAC=2
,
ÓÉBC=2,BB1=2,CC1=1,BC1¡ÍBC,CC1¡ÍBC,µÃB1C1=ÓÉCC1¡ÍAC,µÃAC1=,ËùÒÔA+B1=A,
¹ÊAB1¡ÍB1C1.Òò´ËAB1¡ÍÆ½ÃæA1B1C1.
(2)Èçͼ,¹ýµãC1×÷C1D¡ÍA1B1,½»Ö±ÏßA1B1ÓÚµãD,Á¬½ÓAD.
ÓÉAB1¡ÍÆ½ÃæA1B1C1,µÃÆ½ÃæA1B1C1¡ÍÆ½ÃæABB1,
ÓÉC1D¡ÍA1B1,µÃC1D¡ÍÆ½ÃæABB1,ËùÒÔ¡ÏC1ADÊÇAC1ÓëÆ½ÃæABB1Ëù³ÉµÄ½Ç. ÓÉB1C1=,A1B1=2
,A1C1=,
µÃcos¡ÏC1A1B1=,sin¡ÏC1A1B1=,
ËùÒÔC1D=,¹Êsin¡ÏC1AD=.Òò´Ë,Ö±ÏßAC1ÓëÆ½ÃæABB1Ëù³ÉµÄ½ÇµÄÕýÏÒÖµÊÇ.
½â·¨¶þ(1)Ö¤Ã÷:Èçͼ,ÒÔACµÄÖеãOΪԵã,·Ö±ðÒÔÉäÏßOB,OCΪx,yÖáµÄÕý°ëÖá,½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz.
ÓÉÌâÒâÖª¸÷µã×ø±êÈçÏÂ:A(0,-,0),B(1,0,0),A1(0,-,4),B1(1,0,2),C1(0,
,1).
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 17
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
Òò´ËÓÉ
=(1,,2),=(1,,-2),=(0,2,-3).ÓÉ=0,µÃAB1¡ÍA1B1.
=0,µÃAB1¡ÍA1C1.
ËùÒÔAB1¡ÍÆ½ÃæA1B1C1.
(2)ÉèÖ±ÏßAC1ÓëÆ½ÃæABB1Ëù³ÉµÄ½ÇΪ¦È. ÓÉ(1)¿ÉÖª
=(0,2,1),=(1,,0),=(0,0,2).
ÉèÆ½ÃæABB1µÄ·¨ÏòÁ¿n=(x,y,z).
ÓÉ¿ÉÈ¡n=(-,1,0).ËùÒÔsin ¦È=|cos<,n>|=.Òò´Ë,Ö±
ÏßAC1ÓëÆ½ÃæABB1Ëù³ÉµÄ½ÇµÄÕýÏÒÖµÊÇ.
17.(2018¡¤ÉϺ£¡¤T17)ÒÑÖªÔ²×¶µÄ¶¥µãΪP,µ×ÃæÔ²ÐÄΪO,°ë¾¶Îª2. (1)ÉèÔ²×¶µÄĸÏß³¤Îª4,ÇóÔ²×¶µÄÌå»ý;
(2)ÉèPO=4,OA,OBÊǵ×Ãæ°ë¾¶,ÇÒ¡ÏAOB=90¡ã,MΪÏß¶ÎABµÄÖеã,Èçͼ,ÇóÒìÃæÖ±ÏßPMÓëOBËù³ÉµÄ½ÇµÄ´óС.
¡¾½âÎö¡¿(1)¡ßÔ²×¶µÄ¶¥µãΪP,µ×ÃæÔ²ÐÄΪO,°ë¾¶Îª2,ĸÏß³¤Îª4,
¡àÔ²×¶µÄÌå»ýV=¦Ðr2h=¡Á¦Ð¡Á22¡Á.
(2)¡ßPO=4,OA,OBÊǵ×Ãæ°ë¾¶,ÇÒ¡ÏAOB=90¡ã,MΪÏß¶ÎABµÄÖеã,¡àÒÔOΪԵã,OAΪxÖá,OBΪyÖá,OPΪzÖá,½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ,
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
18
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
¡àP(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),
¡à=(1,1,-4),=(0,2,0).
ÉèÒìÃæÖ±ÏßPMÓëOBËù³ÉµÄ½ÇΪ¦È,
Ôòcos ¦È=.
¡à¦È=arccos.
¡àÒìÃæÖ±ÏßPMÓëOBËù³ÉµÄ½ÇµÄ´óСΪarccos.
18.(2017¡¤±±¾©¡¤ÀíT16)Èçͼ,ÔÚËÄÀâ×¶P-ABCDÖÐ,µ×ÃæABCDΪÕý·½ÐÎ,Æ½ÃæPAD¡ÍÆ½ÃæABCD,µãMÔÚÏß¶ÎPBÉÏ,PD¡ÎÆ½ÃæMAC,PA=PD=(1)ÇóÖ¤:MΪPBµÄÖеã; (2)Çó¶þÃæ½ÇB-PD-AµÄ´óС;
(3)ÇóÖ±ÏßMCÓëÆ½ÃæBDPËù³É½ÇµÄÕýÏÒÖµ.
,AB=4.
¡¾½âÎö¡¿(1)Ö¤Ã÷ÉèAC,BD½»µãΪE,Á¬½ÓME. ÒòΪPD¡ÎÆ½ÃæMAC,
Æ½ÃæMAC¡ÉÆ½ÃæPDB=ME,ËùÒÔPD¡ÎME. ÒòΪABCDÊÇÕý·½ÐÎ,ËùÒÔEΪBDµÄÖеã. ËùÒÔMΪPBµÄÖеã.
(2)½âÈ¡ADµÄÖеãO,Á¬½ÓOP,OE. ÒòΪPA=PD,ËùÒÔOP¡ÍAD.
ÓÖÒòÎªÆ½ÃæPAD¡ÍÆ½ÃæABCD,ÇÒOP?Æ½ÃæPAD,ËùÒÔOP¡ÍÆ½ÃæABCD. ÒòΪOE?Æ½ÃæABCD,ËùÒÔOP¡ÍOE. ÒòΪABCDÊÇÕý·½ÐÎ,ËùÒÔOE¡ÍAD. Èçͼ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz,ÔòP(0,0,
),D(2,0,0),B(-2,4,0),
=(4,-4,0),=(2,0,-).
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦ 19
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
ÉèÆ½ÃæBDPµÄ·¨ÏòÁ¿Îªn=(x,y,z),
Ôò
Áîx=1,Ôòy=1,z=.
ÓÚÊÇn=(1,1,),Æ½ÃæPADµÄ·¨ÏòÁ¿Îªp=(0,1,0).ËùÒÔcos
ÓÉÌâÖª¶þÃæ½ÇB-PD-AΪÈñ½Ç,ËùÒÔËüµÄ´óСΪ.
(3)½âÓÉÌâÒâÖªM,C(2,4,0),.
ÉèÖ±ÏßMCÓëÆ½ÃæBDPËù³É½ÇΪ¦Á,
Ôòsin ¦Á=|cos
ËùÒÔÖ±ÏßMCÓëÆ½ÃæBDPËù³É½ÇµÄÕýÏÒֵΪ.
19.(2017¡¤È«¹ú1¡¤ÀíT18)Èçͼ,ÔÚËÄÀâ×¶P-ABCDÖÐ,AB¡ÎCD,ÇÒ¡ÏBAP=¡ÏCDP=90¡ã. (1)Ö¤Ã÷:Æ½ÃæPAB¡ÍÆ½ÃæPAD;
(2)ÈôPA=PD=AB=DC,¡ÏAPD=90¡ã,Çó¶þÃæ½ÇA-PB-CµÄÓàÏÒÖµ.
¡¾½âÎö¡¿(1)Ö¤Ã÷ÓÉÒÑÖª¡ÏBAP=¡ÏCDP=90¡ã,µÃAB¡ÍAP,CD¡ÍPD. ÓÉÓÚAB¡ÎCD,¹ÊAB¡ÍPD,´Ó¶øAB¡ÍÆ½ÃæPAD.
Ãûʦ¾«ÐÄÕûÀí ÖúÄúÒ»±ÛÖ®Á¦
20