ϰÌâ²á£¨ÉÏ£©´ð°¸09 - ͼÎÄ

ËÄ£®×ÛºÏÌâ¡£

1¡¢ÊÔ»­³öͼ5.1Ëùʾ¸÷Æ½Ãæ»ú¹¹µÄÔ˶¯¼òͼ¡£

£¨a£© (b) (c)

ͼ5.1

2£®¼ÆËãͼ5.2ËùÊ¾Æ½Ãæ»ú¹¹µÄ×ÔÓɶȣ¬Ô²»¡¼ýÍ·±íʾ»ú¹¹ÖеÄÔ­¶¯¼þ¡£

½â£ºF=3n-2PL-PH F=3n-2PL-PH F=3n-2PL-PH =3¡Á4-2¡Á5 -1 =3¡Á5-2¡Á7 -0 =3¡Á3-2¡Á4 -1 =1 =1 =0

½â£ºF=3n-2PL-PH F=3n-2PL-PH F=3n-2PL-PH =3¡Á5-2¡Á7 -0 =3¡Á5-2¡Á7 -0 =3¡Á4-2¡Á5 -1 =1 =1 =1

16

½â£ºF=3n-2PL-PH F=3n-2PL-PH F=3n-2PL-PH =3¡Á7-2¡Á10 -0 =1

½â£ºF=3n-2PL-PH =3¡Á5-2¡Á7 -0 =1

½â£ºF=3n-2PL-PH =3¡Á8-2¡Á11 -1 =1

=3¡Á6-2¡Á8 -1 =1 F=3n-2PL-PH =3¡Á4-2¡Á4 -2 =2

F=3n-2PL-PH =3¡Á5-2¡Á7 -0 =1 =3¡Á5-2¡Á7 -0 =1

F=3n-2PL-PH =3¡Á6-2¡Á8 -1 =1

F=3n-2PL-PH =3¡Á3-2¡Á3 -2 =1 17

½â£ºF=3n-2PL-PH F=3n-2PL-PH =3¡Á8-2¡Á11 -1 =3¡Á6-2¡Á8 -1 =1 =1

ͼ5.2

½â£ºF=3n-2PL-PH F=3n-2PL-PH =3¡Á9-2¡Á12 -2 =3¡Á7-2¡Á9 -2 =1 =1 3£®¼ÆËãͼ5.3Ëùʾ»ú¹¹µÄ×ÔÓɶȣ¬²¢ÅжÏËüÃǵÄÔ˶¯ÊÇ·ñÈ·¶¨¡£

a) b)

ͼ5.3

½â£ºF=3n-2PL-PH F=3n-2PL-PH =3¡Á7-2¡Á9 -1 =3¡Á10-2¡Á14 -0 =2 =2

Òò»ú¹¹×ÔÓɶÈÊýÄ¿´óÓÚ0£¬ÇÒ×ÔÓÉ¶È Òò»ú¹¹×ÔÓɶÈÊýÄ¿´óÓÚ0£¬ÇÒ×ÔÓÉ¶È ÊýÄ¿µÈÓÚÔ­¶¯¼þÊýÄ¿£¬¹ÊÔ˶¯È·¶¨¡£ ÊýÄ¿µÈÓÚÔ­¶¯¼þÊýÄ¿£¬¹ÊÔ˶¯È·¶¨¡£

18

*4£®ÊÔÎÊͼ5.4Ëùʾ¸÷»ú¹¹ÔÚ×é³ÉÉÏÊÇ·ñºÏÀí£¿Èç²»ºÏÀí£¬ÇëÕë¶Ô´íÎóÌá³öÐ޸ķ½°¸¡£

½â£ºF=3n-2PL-PH =3¡Á5-2¡Á7 -1 =0 »ú¹¹ÎÞ·¨Ô˶¯£¬²»ºÏÀí Ð޸ķ½°¸ÂÔ¡£

5.4

F=3n-2PL-PH =3¡Á5-2¡Á7-1 =0

»ú¹¹ÎÞ·¨Ô˶¯£¬²»ºÏÀí Ð޸ķ½°¸ÂÔ¡£ 19

ͼ

ÁªÏµ¿Í·þ£º779662525#qq.com(#Ìæ»»Îª@)