´óѧÎïÀí ÈÈѧ
116£® (1) µÈѹ£¬ (2) µÈѹ£»
pA¡úB1µÈѹ¹ý³ÌAB1B2A¡úB2µÈιý³ÌB3A¡úB3¾øÈȹý³ÌOV1VV2117£® (1) ²»±ä£¬ (2) ±ä´ó£¬ (3) ±ä´ó£»
118£® µÈѹ£¬ µÈѹ£¬ µÈѹ£»
119£® (1) ÆøÌåÄÚÄܵÄÔö¼Ó£¬ (2) ÆøÌå¶ÔÍâ×ö¹¦£¬ (3) ÆøÌåÄÚÄÜÔö¼ÓºÍ¶ÔÍâ×ö¹¦£® 120£® (1) ÎüÈÈ£¬ (2) ·ÅÈÈ£¬ (3) ·ÅÈÈ 121£® 8.64?103£»
122£® 1:2£¬ 5:3£¬ 5:7£» 123£®
72W£» 124£® 8.31J£¬ 29.09J£» 125£®
2ii?2£¬ i?2£» 126£®
132(ppV11?2)(V2?1)£¬ 2(p2V2?p1V1)?2(p1?p2)(V2?V1)£» 127£®
32p1V1£¬ 0£» 128£® W/R£¬
72W£» 129£® 7.48?103J£¬ 7.48?103J£» 130£® 124.7J£¬ ?84.3J£»
131£®1.62?104 J (»ò160 atm?L)£»
132£® ??1w?1 (»òw?1??1)£» 133£® 90J£»
134£® 33.3%£¬ 50%£¬ 66.7%£» 135£® 400£»
136£® 33.3%£¬ 8.31?103J£»
137£® 200J£»
29
´óѧÎïÀí ÈÈѧ
138£® 500£¬ 100£»
139£® ״̬¼¸ÂÊÔö´ó£¬²»¿ÉÄæµÄ£»
140£® ´Ó¼¸ÂʽÏСµÄ״̬µ½¼¸ÂʽϴóµÄ״̬£¬×´Ì¬µÄ¼¸ÂÊÔö´ó (»òìØÖµÔö¼Ó)¡£ Èý¡¢¼ÆËãÌâ 141£®½â£º
(1)
w?3kT?8.28?10?21 J 23EK?Nw??N1?N2?kT?4.14?105 J
2(2) p = n kT£½2.76¡Á105 Pa142£®½â£º
(1) ÓÉ v
??21/21/2?3RT/Mmol
¶øÇâºË Mmol£½1¡Á10?3 kg¡¤mol?1 ¡à v??2£½1.58¡Á106 m¡¤s?1
(2) w?143£®½â£º
3kT£½1.29¡Á104 eV 2È¡A¡¢BÁ½²¿·ÖµÄÆøÌåΪϵͳ£¬ÒÀÌâÒâÖª£¬ÔÚÍâ½çѹËõA²¿·ÖµÄÆøÌ壬×÷¹¦ÎªWµÄ¹ý
³ÌÖУ¬ÏµÍ³ÓëÍâ½ç½»»»µÄÈÈÁ¿QΪÁ㣬¸ù¾ÝÈÈÁ¦Ñ§µÚÒ»¶¨ÂÉ£¬ÓÐ
Q=¡÷E+(£W) = 0 ¢Ù
ÉèA¡¢B²¿·ÖÆøÌåµÄÄÚÄܱ仯·Ö±ðΪ¡÷EAºÍ¡÷EB
¡÷E=¡÷EA+¡÷EB
¢Ú
ÒòΪCÊǵ¼Èȵ쬹ÊÁ½²¿·ÖÆøÌåµÄζÈʼÖÕÏàͬ£¬Éè¸Ã¹ý³ÌÖеÄζȱ仯Ϊ?T£¬ÔòA¡¢BÁ½²¿·ÖÆøÌåÄÚÄܵı仯·Ö±ðΪ
?EA??EB?3R?T ¢Û 25R?T ¢Ü 25W5R?W 24R8½«¢Ú¡¢¢Û¡¢¢Ü´úÈë¢Ùʽ½âµÃ ¡÷T =W/(4R) ½«ÉÏʽ´úÈë¢ÜʽµÃ ?EB?144£®½â£º
(1) ¶ÔA¡¢BÁ½²¿·ÖÆøÌ建ÂýµØ¼ÓÈÈ£¬½Ô¿É¿´×÷×¼¾²Ì¬¹ý³Ì£¬Á½ÊÒÄÚÊÇͬÖÖÆøÌ壬¶øÇÒ¿ªÊ¼Ê±Á½²¿·ÖÆøÌåµÄp¡¢V¡¢T¾ùÏàµÈ£¬ËùÒÔÁ½ÊÒÄÚÆøÌåµÄĦ¶ûÊýM/MmolÒ²Ïàͬ¡£
30
´óѧÎïÀí ÈÈѧ
AÊÒÆøÌå¾ÀúµÄÊǵÈÌå¹ý³Ì£¬BÊÒÆøÌå¾ÀúµÄÊǵÈѹ¹ý³Ì£¬ËùÒÔA¡¢BÊÒ ÆøÌåÎüÊÕµÄÈÈÁ¿·Ö±ðΪ QA£½(M/Mmol)CV(TA£T)
QB£½(M/Mmol)CP(TB£T)
ÒÑÖªQA = QB£¬ÓÉÉÏÁ½Ê½¿ÉµÃ ?? Cp /CV = ¡÷TA /¡÷TB =7/5 ÒòΪCp =CV +R£¬´úÈëÉÏʽµÃ C5V?2R ,C7p?2R (2) BÊÒÆøÌå×÷¹¦Îª W=p¡¤¡÷V=£¨M/Mmol£©R¡÷TB
BÊÒÖÐÆøÌåÎüÊÕµÄÈÈÁ¿ÓÃÓÚ×÷¹¦µÄ°Ù·Ö±ÈΪ
W(M/Mmol)R?TBRRQ?(M/M???28.6% Bmol)Cp?TBCp72R145£®½â£º
(1) W?p?V?R?T?598 J £» (2)
?E?Q?W?1.00?103 J £»
(3) CQp??T?22.2J?mol?1?K?1 C?1V?Cp?R?13.9J?mol?K?1 ??CpC?1.6
V146£®½â£º
(1) ?E?C5V(T2?T1)?2(p2V2?p1V1)£» (2) W?12(p1?p2)(V2?V1)£¬ WΪÌÝÐÎÃæ»ý£¬¸ù¾ÝÏàËÆÈý½ÇÐÎÓÐp1V2= p2V1£¬Ôò W?12(p2V2?p1V1) (3) Q =¦¤E+W=3( p2V2£p1V1 )
(4) ÒÔÉϼÆËã¶ÔÓÚA¡úB¹ý³ÌÖÐÈÎһ΢С״̬±ä»¯¾ù³ÉÁ¢£¬¹Ê¹ý³ÌÖÐ ¦¤Q =3¦¤(pV)£®
ÓÉ״̬·½³ÌµÃ ¦¤(pV) =R¦¤T£¬ ¹Ê ¦¤Q =3R¦¤T£¬ Ħ¶ûÈÈÈÝ C=¦¤Q/¦¤T=3R£® 147£®½â£º
31
´óѧÎïÀí ÈÈѧ
ÓÉͼ¿É¿´³ö pAVA = pCVC ´Ó״̬·½³Ì pV =?RT Òò´ËÈ«¹ý³ÌA¡úB¡úC
?E=0£®
TA=TC £¬
B¡úC¹ý³ÌÊǾøÈȹý³Ì£¬ÓÐQBC = 0£® A¡úB¹ý³ÌÊǵÈѹ¹ý³Ì£¬ÓÐ QAB?? Cp(TB?TA)?5(pBVB?pAVA)£½14.9¡Á105 J£® 2¹ÊÈ«¹ý³ÌA¡úB¡úCµÄ Q = QBC +QAB =14.9¡Á105 J£® ¸ù¾ÝÈÈÒ»ÂÉQ=W+?E£¬µÃÈ«¹ý³ÌA¡úB¡úCµÄ
W = Q£?E£½14.9¡Á105 J £®
148£®½â£º
(1) p£VͼÈçÓÒͼ (2) T4=T1(3)Q??E£½0
p (atm) 2 1 T1 T3 T2 T4 V (L)
MMCp(T2?T1)?CV(T3?T2) MmolMmol53p1(2V1?V1)?[2V1(2p1?p1)] 2211p1V1£½5.6¡Á102 J 2? ?O 1 2 (4) W£½Q£½5.6¡Á102 J 149£®½â£º
(1) p£VͼÈçͼ£®
p12 (2) T1£½(273£«27) K£½300 K ¾Ý V1/T1=V2/T2£¬ µÃ T2 = V2T1/V1£½600 K Q =??Cp(T2?T1) = 1.25¡Á104 J (3) ?E£½0
3 (4) ¾Ý Q = W + ?E ¡à W£½Q£½1.25¡Á104 J 150£®½â£º
º¤ÆøÎªµ¥Ô×Ó·Ö×ÓÀíÏëÆøÌ壬i?3 (1) µÈÌå¹ý³Ì£¬V£½³£Á¿£¬W =0
OV1V2V
¾Ý Q£½?E+W ¿ÉÖª Q??E?
MCV(T2?T1)£½623 J Mmol32